CA_Ch2: Exploratory spatial analysis of clustering of FMD in Myanmar villages

2.1 Background

- 2.2 Case study- exploratory spatial data analysis to detect clusters of FMD in villages in Myanmar
- Exercise 2.1: Exploratory spatial data analysis of villages with FMD outbreaks in Myanmar
- 2.3 Localised non-focused cluster detection
- 2.4 Use of SaTScan software to investigate spatial clusters of FMD in Myanmar
- Exercise 2.2: Interpretation

2.1 Background

⁶ This section continues that from the earlier teaching material on SRA for incursion and spread of FMD in Myanmar. Some of the spatial files created in that teaching will be reused in this section.

The authors acknowledge the Livestock Breeding and Veterinary Department (LBVD), Myanmar for the use of the following data sets provided by the NZ MFAT-OIE SEACFMD project used in this section.

The datasets for Cluster Analysis exercises can be downloaded <u>HERE</u>^{*r*}

2.2 Case study- exploratory spatial data analysis to detect clusters of FMD in villages in Myanmar

2.2.1 Study data files

The original data consisted of two files located in "Geo-Features" subfolder:

- The locations and administrative regions of FMD outbreak villages between March 2015 and Feb 2016, provided in the file "all_outbreaks_rev.csv"
- 2. The locations and administrative regions of all villages in Myanmar in the file "mmr_crty-level_pplp2_250k_mimu_Jan_2018_V0.csv"

2.2.2 Set up a new project in QGIS

⁶We set up a new project in QGIS (and later for use of SaTScan) to keep track of the many files we need to work with, just as we did with the GIS component of SRA. However, to reduce the burden of creating a new folder structure, and because we will need several files from the SRA analysis, we will source the files in the previous data folders."

- Create a new QGIS project as for MMR FMD Spatial Risk Assessment and save the QGIS project file in the same directory as you did previously (Review SRA_Chatpter 3)
- All of the raw data files for this analysis were already provided for the previous SRA exercise and are located in subfolders with the "RawData" folder
- The new results files for this project can be added to subfolders within the existing "ResData" folder

2.2.3 Visualise the spatial data

A first step in a spatial analysis is to map the data, so we start by mapping the village locations for Myanmar (mmr_crty-

level_pplp2_250k_mimu_Jan_2018_V0) located in the "RawData\Geo-Features" folder:

- Click "Open Data Source Manager" on Tool bar Menu -> Dialog box ... (Figure 2.1)
- 1. Select "Delimited Text"
- 2. In file name select the above file
- 3. Check Geometry Definition is correct

4. Click "Add"

Q	Data Source Manager — Delimited Text	· · · · · · · · · · · · · · · · · · ·	<
	Browser 2	File name 🖟 Course 2021 \Course Notes \Data \MMR-FMD-new \RawData \Geo-Features \mmr_crty-level_pplp2_250k_mimu_Jan_2018_V0.csv 🚳 🗌	
V	Vector	Layer name mmr_crty-level_pplp2_250k_mimu_Jan_2018_V0 Encoding UTF-8	-
	Raster	▼ File Format	
×	Mesh 1	CSV (comma separated values)	
6		Regular expression delimiter	
	Delimited lext	O Custom delimiters	
	GeoPackage	Record and Fields Options	
1	SpatiaLite	Number of header lines to discard 0	
œ.	PostgreSQL	✓ First record has field names	
M	MSSQL	✓ Detect field types Discard empty fields	
	Oracle	▼ Geometry Definition	
DB2	DB2 3	Point coordinates X field Z field	
V	Virtual Layer	Well known text (WKT) Y field Latitude M field DMS coordinates	
Ø	WMS/WMTS	O No geometry (attribute only table) Geometry CRS EPSG:4326 - WGS 84	
	WFS / OGC API - Features	J Layer Settings	J
A	wee	Sample Data	
	wes	Je Village Vil_Mya_MMR3 Vil_Mya_Win Mya_Zawgyi AltVIg_Eng Longitude Latitude 🔺	
Ħ	XYZ	1 Hpyin Kawng (Lon Ga Yang) ????????? zsifaumif ????????? Lon Tar Yang 97.498131 27.213461	
		2 Pan Tar Tee ???????? 97.511841 27.208420	
	vector me	3 Hpyin Kaung ????????? 97.496429 27.217960 ♥ ◀	
Ø4	ArcGIS Map Service		
6	ArcGIS Feature Service		

Figure 2.1: Create spatial file of Myanmar village locations

CONTINUE

We then project and save the file to the Project CRS:

- Right click mmr_crty-level_pplp2_250k_mimu_Jan_2018_V0 in Layers
 Pane -> Export -> Save Features As ... -> Dialog box (Figure 2.2)
- 1. Click folder button to far right of File name and Select "ResData-Features" and name file "MMRVillages"
- 2. In CRS combo box select "Project CRS:32646 WGS 84 / UTM zone 46N"

з. Click "OK"

🔇 Save Vec	tor Layer as ×
Format	ESRI Shapefile
File name	SCourse2021\CourseNotes\Data\MMR-FMD-new\ResData\Geo-Features\MMRVillages.shp 🚳 🛄
Layer name	
CRS	Project CRS: EPSG:32646 - WGS 84 / UTM zone 46N
Encoding Save o Save o Select Geom	UTF-8
Geometr	ry type Automatic rulti-type ude z-dimension
Layer RESIZE	ctent (current: none) r Options
SHPT	Add saved file to man

Figure 2.2: Save projected spatial file of Myanmar village locations

Add map layer of FMD case village locations:

• Drag file "all_outbreaks_rev.shp" from "ResData-Features" folder created in the previous SRA project onto the Map palette

Click \blacktriangleright to play the video

Click \blacktriangleright to play the video

CONTINUE

7.2.4 Create a kernel-smoothed density map (heatmap) of FMD outbreak villages

The Heatmap (Kernel Density Estimation)" function in QGIS works on only 1 set of points at a time. In our example, we are interested in both the outbreak villages, but also in the background population of all villages. Each data set can only be smoothed into one heatmap, but it is of course possible to create different layers of spatial objects and view them together

- Highlight "all_outbreaks_rev" in the Layers Pane
- In Processing Toolbox search bar type "kernel density" and select "Interpolation -> double click"Heatmap (Kernel Density Estimation) -> Dialog box (Figure 2.3)
- 1. Set radius to 100000 (100 km) to begin with (this setting is subjective only)
- 2. Set number of rows in output to 200 (the other boxes self-fill)
- 3. Click "Run"
- 4. Click "Close"

🔇 Heatmap	(Kernel Density Estir	mation)				×
Parameters	Log					
Point layer						
° all_outbr	eaks_rev [EPSG:3264	46]	<u> </u>		- 47	₹
Selected f	features only		1			
Radius						
100000.0000	000				🖾 🌲 r	neters 💌
Output raster	size					
Rows	200	Columns	84	\$ 2		
Pixel size X	7311.701606	Pixel size Y	7311.701606	\$ 2		
Advance	ed Parameters					
Heatmap						
[Save to tem	porary file]					
✓ Open out	put file after running a	algorithm				
				3	4)	
			09/	3	4	Cancel
			0%	3	4	Cancel

Figure 2.3: Create heat map of FMD outbreak villages in Myanmar

CONTINUE

Save your heatmap as raster layer:

 Right-click "Heatmap" in the Layers Pane -> Export -> Save As ... -> Dialog box (Figure 2.4)

- 1. Select folder "-Features" and create a new name for the file "Outbreaks_Heatmap" in the GeoTIFF format
- 2. Check that the CRS is correct for the project and set the extent to that of the study region (MMR_0)
- 3. Click OK

Q Save Rast	ter Layer as X
Output mode Format	Raw data Rendered image GeoTIFF Create VRT
File name	2\SEACGISCourse2022-StudentVw\Data\ResData\Geo-Features\Outbreaks_Heatmap.tif 🚳 🗌
Laver name	
CRS	EPSG: 32646 - WGS 84 / UTM zone 46N 🔹 🛞
▼ Exten	t (current: MMR_0)
	North 3165948.5370
West 4	14100.9881 East 1348457.5904
	South 978844.6055
Curr	rent Layer Extent Calculate from Layer * Map Canvas Extent
Resolu	ution (current: layer)
Horiz	tontal 7311.7 Vertical 7311.7 Layer Resolution
O Colur	nns 128 Rows 299 Layer Size
Cr	eate Options
🕨 🗌 Ру	ramids
▶ No	data values
	3
	Add saved file to map OK Cancel Help

(i) Remove "Heatmap" from Layers Pane (it is a temporary file only and is not saved when a session is closed)

CONTINUE

Edit the default map properties to better visualise the density of cases:

- Highlight the newly-created file in the Layers Pane "Heatmap"
- Right click -> Properties -> Dialog box ... (Figure 2.5)
- 1. Select "Symbology" tab
- 2. In "Render type" select "Singleband pseudocolor"
- 3. Select a "Color ramp" option (orange to red is a reasonable choice)
- 4. Click "OK"

Q Layer Properties — He	atmap — Symbology						×
Q	Band Rendering						
	Render type Singleband pseud	locolor 🔻	2				
Source 1	Band	Band 1 (Gra	ay)				-
Symbology	Min Min / Max Value Settin	0 05	м	lax	30	.0678844	
Transparency	Interpolation 3	- 	Linear				•
🗠 Histogram	Color ramp						
💉 Rendering	Label unit suffix	[
	Label precision		4				
🔥 Temporal	Value Color	Label					
Pyramids	0	0.0000					
Metadata	7.5169711	7.5170					
e Legend	15.0339422	15.0339					
	22.5509133	22.5509					
	30.0678844	30.0679					
	Mode Continuous Classify 단 == Clip out of range values	at 1				Classes 5	\$
	Color Rendering						
	Blending mode Normal]	= 0 \$	/ Contrast		0	Reset
	Gamma —		1.00	Saturation		O	\$
	Style *		4	OK	Off Cancel	Apply	▼ ▼

Figure 2.5: Edit symbology of heat map of FMD outbreak villages in Myanmar

CONTINUE

["]Experiment with different radius dimensions to visualise

how the heat map and its interpretation varies. A heatmap of the density of outbreak villages plotted alongside their locations and the background population of all villages might look something like Figure 2.6)."

Figure 2.6: Heat map (red shading indicates areas of increased density) of FMD outbreak villages (green points) against population of all villages (black points) in Myanmar

CONTINUE

Click \blacktriangleright to play the video

Exercise 2.1: Exploratory spatial data analysis of villages with FMD outbreaks in Myanmar

Exploratory spatial data analysis begins with mapping and describing the raw data.

- 1. Describe in words the density of village outbreaks only within the study region in terms of both large and small scale patterns
- 2. What additional information is needed to adequately explain this pattern?
- 3. Does it appear that the density of outbreak villages is approximately the same as that for all outbreak and non-outbreak villages combined?
- 4. Could the pattern of density of FMD outbreaks just be reflecting the underlying density of the population of villages at risk of an outbreak, or could other factors be responsible?

CONTINUE

["]Answer keys

1. The large scale distribution of outbreak villages shows them mainly in the central areas of Myanmar with few towards the extremities of the compass points. At a smaller scale, in the areas where outbreaks were recorded, the outbreak villages appear to cluster together in groups.

2. We need to understand the density of villages to determine whether the density of outbreaks merely represents

the density of the population of villages at risk of an outbreak, or whether there are true clusters of outbreaks due to local risk factors after accounting for the underlying population at risk

3. No. There appear to be fewer outbreaks in the highdensity areas of villages, such as the south delta regions.

4. It is likely that factors other than the village density are associated with FMD outbreaks in villages"

2.3 Localised non-focused cluster detection

⁶A formal statistical test is a useful additional step to detect spatial clusters of disease because it removes some of the issues about subjective assessment.

Spatial clustering may be investigated in three different dimensions (linear, point and area) and from a range of different study and data types, for example case-control or surveillance studies with case and population count data, and dichotomous, categorical, rank or continuous data types. Individual statistical tests were primarily developed to be used with one data type, but it is possible to aggregate point to areal data, and possibly areal to point data (by using areal centroids). However, the scanning methods for point data are less suitable for areal data as sub-regions may not neatly fall within the scanning circle."

2.3.1 Kulldorff's spatial scan test

• Spatial data type: Areal or point

- Data needed: Polygons of areal units, counts of cases and either controls or population at risk, or dichotomous infection status of study units e.g. farms or villages
- How the test works:
 - A theoretical circular window is placed on a map of all study locations, for example the coordinates of the villages or centroids of administrative regions
 - A scanning window of increasing radius is placed around one of many possible centroids by sequentially aggregating the nearest neighbour areas to create zones
 - The window radius may vary to a defined upper limit (no more than 50% of study population is recommended)
 - For each window the risk of disease is compared with that of the study area outside the window
 - If using case-control data, controls should be selected from same source population as the cases
 - Significance testing is estimated by Monte Carlo sampling
 - The disease data may be either Bernoulli (zero for cases and one for controls) or Poisson (the number of cases and the population at risk)
 - The test adjusts for the heterogeneity of the population at risk by indirect adjustment to calculate the expected number of cases for each location
 - This test may be used as complement to a global clustering test
 - The test can be used to detect clusters with increased, decreased or both increased and decreased incidence of disease
 - The test reports the most significant primary and secondary clusters

- A case study on the use of the spatial scan test is described in Section 7.4
- References: Kulldorff and Nagarwalla (1995), Kulldorff (1997)

7.3.2 Temporal scan test

- Data needed: Count of cases by time
- How the test works:
 - Originally proposed by <u>Naus (1966)</u> for use in stable population and analogous to spatial scan statistic
 - The test statistic is the maximum number of cases in a predefined "window" of time found by scanning all time series of that interval in the study
 - The test can be generalised to account for temporal trends in the population size and incorporated in the SaTScan software
 - The test is most sensitive when the the scanning window is a similar interval as the duration of the clusters
 - It is recommended to set the scanning window on basis of known disease patterns, but the subjectivity of this setting can affect test results
- References: Kulldorff (2005)

2.4 Use of SaTScan software to investigate spatial clusters of FMD in Myanmar

2.4.1 Background

⁶We set out below steps for a statistical analysis for spatial clusters of FMD in Mandalay and Nay Phi Taw States of Myanmar in the 2015-2016 period using the open-source software "SaTScan". These data are a subset of the national data used in the previous exercises.

The data for this case study of the use of SaTScan were sub-setted so as to include only data in the Mandalay and Nay Pyi Taw state regions. The records of outbreaks in these two state regions are provided for you in the file "MndlyNPTVillStatus.csv" and the variables are described in Table 2.1."

Description

Variable name	Description
Vill_Pcode	Unique village post code
State_Regi	State or Region name
Latitude	Latitude (decimal degrees)
Longitude	Longitude (decimal degrees)
Detect_date	Date of first detection of FMD in village
NCase	Indicator variable for case village
NCon	Indicator variable for control village

CONTINUE

2.4.2 Analysis steps

2.4.2.1 Software and file management

- Download and install SaTScan software on your PC
 - SaTScan software is available from https://www.satscan.org/

- You will need to register yourself to install the software, but this process is free
- Google Earth Pro from https://www.google.com/earth/download/gep/agree.html?hl=en-GB
 - This application will allow you to visualise the locations and geographic features of clusters identified by SaTScan using 'Google Earth'
- Folder and data management
 - Create the following folder and subfolder structure at the level below your course project folder
 - SaTScan
 - BernoulliModel
 - InputFiles
 - OutputFiles
- Copy the following study file into the "InputFiles" folder:
 - "MndlyNPTVillStatus.csv"

CONTINUE

2.4.2.2 Import the data into the SaTScan application

- Launch the SaTScan software
- Select "Create New Session" from the Start Window -> Opens tabbed dialog box
- You need to create the three files needed for this analysis (Figure 2.7) from the NPTVillStatus.csv file using the Import File Wizard of the application
- The three files will be linked through a location ID, which represents the name or code for a geographical entity such as a state, province, county, zip code, postal code area, census tract or dwelling
- In the Mandalay Province data, the unique location variable used is "Vill_Pcode", with each village represented by a set of 6 integers
 - The three files you will create are:
 - A Case File
 - A Control File
 - A Coordinates File

SaTScan - Software for the Spatial and Sp File Session Windows Help	ace-Time Scan Statistic		_	×
• ≠ 🖬 ▶ 🖫 ● 🖏	0			
Input Analysis Output			×	
Case File:	1	Time Precision		
Study Period	Year Month Day	Generic		
Start Date: 2000 1 1	End Date: 2000 12 31			
Coordinates File:	3	- Coordinates	1	
Grid File: (optional)		• Lat/Long		
		Advanced >>		
		L		

Figure 2.7: Dialog box on opening screen of SaTScan software

Case File:

- This file will contain data on the case villages and have the filename extension "*.cas"
- Click button on right of Case File combo box to open the Import File Wizard -> Click Next at bottom of window:

- Select Case File -> Dialog box opens
- Locate "MndlyNPTVillStatus.csv" and double-click to add it to the File
 name box, click Open
- Import File Wizard opens
- Select "Next" -> Dialog box opens: (Figure 2.8)
- 1. Tick "First row is a column name"
- 2. Select Field Separator: Comma
- 3. Group Indicator: Double quotes
- 4. Click Next

- Define model and variables (Figure 2.9)
- 1. Display SaTScan variables for: "Bernoulli model
- 2. Location ID: "Vill_Pcode"
- 3. Number of cases: "NCase"
- 4. Click "Next"

	anables For: Der	nouill model			~	$ \bigcirc $
SaTScan Variable		So	urce File Variable			Clear
location ID		Vill	Pcode	2		
Number of Cases		NC	ase			
Date/Time (option	al)	una	assigned	3		
Generated Id #	One Count #	Vill_Pcode	State_Regi	Latitude	Longitude	De
Generated Id # ocation 1	One Count #	Vill_Pcode 191979	State_Regi Mandalay	Latitude 20.783689	Longitude 95.112869	De
Generated Id # ocation1 ocation2	One Count #	Vill_Pcode 191979 191978	State_Regi Mandalay Mandalay	Latitude 20.783689 20.77829	Longitude 95.112869 95.111557	De
Generated Id # ocation1 ocation2 ocation3	One Count # 1 1 1 1	Vill_Pcode 191979 191978 191669	State_Regi Mandalay Mandalay Mandalay	Latitude 20.783689 20.77829 21.326229	Longitude 95.112869 95.111557 95.646393	De
Generated Id # ocation1 ocation2 ocation3 ocation4	One Count # 1 1 1 1 1 1 1	Vill_Pcode 191979 191978 191669 194663	State_Regi Mandalay Mandalay Mandalay Mandalay	Latitude 20.783689 20.77829 21.326229 21.09712	Longitude 95.112869 95.111557 95.646393 95.871483	De
Generated Id # ocation1 ocation2 ocation3 ocation4 ocation5	One Count # 1 1 1 1 1 1 1 1 1 1	Vill_Pcode 191979 191978 191669 194663 194662	State_Regi Mandalay Mandalay Mandalay Mandalay Mandalay	Latitude 20.783689 20.77829 21.326229 21.09712 21.093269	Longitude 95.112869 95.111557 95.646393 95.871483 95.881363	De
Generated Id # ocation1 ocation2 ocation3 ocation4 ocation5 ocation6	One Count # 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Vill_Pcode 191979 191978 191669 194663 194662 194661	State_Regi Mandalay Mandalay Mandalay Mandalay Mandalay Mandalay	Latitude 20.783689 20.77829 21.326229 21.09712 21.093269 21.10391	Longitude 95.112869 95.111557 95.646393 95.871483 95.881363 95.879547	De
Generated Id # ocation1 ocation2 ocation3 ocation4 ocation5 ocation6 ocation7	One Count # 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Vill_Pcode 191979 191978 191669 194663 194662 194661 194553	State_Regi Mandalay Mandalay Mandalay Mandalay Mandalay Mandalay Mandalay	Latitude 20.783689 20.77829 21.326229 21.09712 21.093269 21.10391 21.210449	Longitude 95.112869 95.111557 95.646393 95.871483 95.881363 95.879547 95.949997	
Generated Id # ocation1 ocation2 ocation3 ocation4 ocation5 ocation6 ocation7	One Count # 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Vill_Pcode 191979 191978 191669 194663 194662 194661 194553	State_Regi Mandalay Mandalay Mandalay Mandalay Mandalay Mandalay	Latitude 20.783689 20.77829 21.326229 21.09712 21.093269 21.10391 21.210449	Longitude 95.112869 95.111557 95.646393 95.871483 95.881363 95.879547 95.949997	De

Figure 2.9: Dialog box of Import File Wizard in SaTScan software that defines variables in study file from which importing case data

- Select directory and create file name to save imported file (Figure 2.10)
- 1. Save imported input file as: "Data-FMD-new.cas"
- 2. Click "Import" to complete the step

🔯 Import File Wizard	×
Save imported input file as: 1021\CourseNotes\Data\MMR-FMD-new\SatSCan\BernoulliModel\InputFiles\Cases.cas	Change
○ Save these settings and read directly from file source when running the analysis.	1
Cancel	2 Import

Figure 2.10: Dialog box of Import File Wizard in SaTScan software to name and save case file

CONTINUE

Control File:

- This file contains data on the control (non-case) villages and will have a *.ctl" filename extension
- Click button on right of Control File combo box to open the Import File
 Wizard -> Click Next at bottom of window :
- Select Case File Dialog box opens

- Locate "MndlyNPTVillStatus.csv" and double-click to add it to the File name box, click Open
- Import File Wizard opens
- Select "Next" (Figure 2.11)
- 1. Tick "First row is a column name"
- 2. Select Field Separator: Comma
- 3. Group Indicator: Double quotes
- 4. Click Next

Figure 2.11: Dialog box of Import File Wizard in SaTScan software to define format of study file from which importing control data

CONTINUE

Define model and variables (Figure 7.12)

- 1. Location ID: "Vill_Pcode"
- 2. Number of cases: "NCon"
- 3. Click "Next"

SaTScan Variable		So	urce File Variable	- 1		Clear
ocation ID		Vill	Pcode			
Number of Control	ls.	INC	on			
Date/Time (option	al)	lunz	assigned	<u> </u>		
Generated Id #	One Count #	Vill_Pcode	State_Regi	Latitude	Longitude	De
Generated Id # ocation 1	One Count #	Vill_Pcode 191979	State_Regi Mandalay	Latitude 20.783689	Longitude 95.112869	De
Generated Id # ocation 1 ocation 2	One Count #	Vill_Pcode 191979 191978	State_Regi Mandalay Mandalay	Latitude 20.783689 20.77829	Longitude 95.112869 95.111557	De
Generated Id # ocation1 ocation2 ocation3	One Count # 1 1 1 1	Vill_Pcode 191979 191978 191669	State_Regi Mandalay Mandalay Mandalay	Latitude 20.783689 20.77829 21.326229	Longitude 95.112869 95.111557 95.646393	De
Generated Id # ocation1 ocation2 ocation3 ocation4	One Count # 1 1 1 1 1 1 1	Vill_Pcode 191979 191978 191669 194663	State_Regi Mandalay Mandalay Mandalay Mandalay	Latitude 20.783689 20.77829 21.326229 21.09712	Longitude 95.112869 95.111557 95.646393 95.871483	De
Generated Id # ocation1 ocation2 ocation3 ocation4 ocation5	One Count # 1 1 1 1 1 1 1 1 1 1	Vill_Pcode 191979 191978 191669 194663 194662	State_Regi Mandalay Mandalay Mandalay Mandalay Mandalay	Latitude 20.783689 20.77829 21.326229 21.09712 21.093269	Longitude 95.112869 95.111557 95.646393 95.871483 95.881363	De
Generated Id # ocation1 ocation2 ocation3 ocation4 ocation5 ocation6	One Count # 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Vill_Pcode 191979 191978 191669 194663 194662 194661	State_Regi Mandalay Mandalay Mandalay Mandalay Mandalay Mandalay	Latitude 20.783689 20.77829 21.326229 21.09712 21.093269 21.10391	Longitude 95.112869 95.111557 95.646393 95.871483 95.881363 95.879547	De
Generated Id # ocation1 ocation2 ocation3 ocation4 ocation5 ocation6 ocation7	One Count # 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Vill_Pcode 191979 191978 191669 194663 194662 194661 194553	State_Regi Mandalay Mandalay Mandalay Mandalay Mandalay Mandalay Mandalay	Latitude 20.783689 20.77829 21.326229 21.09712 21.093269 21.10391 21.210449	Longitude 95.112869 95.111557 95.646393 95.871483 95.881363 95.879547 95.949997	De

Figure 2.12: Dialog box to of Import File Wizard in SaTScan software to name and save controls file

- Select directory and create file name to save imported file (Figure 2.13)
- 1. Save imported input file as: "Data-FMD-new.ctl"
- 2. Click "Import" to complete the step

Figure 2.13: Dialog box to of Import File Wizard in SaTScan software to name and save controls file

Coordinates File:

- Click button on right of Coordinates File combo box to open the Import File Wizard -> Click Next at bottom of window :
- Select Coordinates File
- Dialog box opens
- Locate "MndlyNPTVillStatus.csv" and double-click to add it to the File name box, click Open
- Import File Wizard opens
- Select "Next" -> dialog box (Figure 2.14)
- 1. Tick "First row is a column name"
- 2. Select Field Separator: Comma
- 3. Group Indicator: Double quotes
- 4. Click Next

Dimport File Wizard	×
Sampling of File Contents:	
"Vill_Pcode","State_Regi","Latitude","Longitude","Detect_date"	^
191979, "Mandalay", 20.783689, 95.112869, ,0,1 191978, "Mandalay", 20.77829, 95.111557, ,0,1	
191669, "Mandalay", 21.326229, 95.646393, ,0,1	
194663, "Mandalay", 21.09712, 95.871483,,0,1	
<pre>>></pre>	*
Ignore first 0 rows First row is column name	
Field Separator Ocomma Semic 2 Whitespace Other	
Group Indicator O Double Quotes	
3	
< Previous Next >	

Figure 2.14: Dialog box to of Import File Wizard in SaTScan software to format of study file from which importing coordinates data

- Import File Wizard Coordinates options (Figure 2.15)
- 1. Display SaTScan Variables for: Select Latitude/Longitude Coordinates
- 2. Location ID: Select "Vill_Pcode"
- 3. Latitude (y-axis): Select "Latitude"

4. Longitude (x-axis): Select "Longitude"

5. Click "Next"

🚳 Import File W	/izard					>
Display SaTScan Va	ariables For: L	atitude/Longitud	de Coordinates		~	
SaTScan Variable		s	ource File Varia	ble 2		Clear
Location ID		Vil	Pcode			
Latitude (y-axis)		La	titude	3		
Longitude (x-axis)		Lo	ngitude			
Generated Id #	Vill_Pcode	State_Regi	Latitude	Longitude	Detect_date	NCi
location 1	191979	Mandalay	20.783689	95.112869		0 ^
location2	191978	Mandalay	20.77829	95.111557		0
location3	191669	Mandalay	21.326229	95.646393		0
location4	194663	Mandalay	21.09712	95.871483		0
location5	194662	Mandalay	21.093269	95.881363		0
location6	194661	Mandalay	21.10391	95.879547		0
location7	194553	Mandalay	21.210449	95.949997		0
< = Column is not	actually define	d in file but can l	be used as SaT	Scan variable.	5	>

Figure 2.15: Dialog box of Import File Wizard in SaTScan software that defines variables in study file from which importing coordinates data

- Import File Wizard Coordinates combo box
- Select directory and create file name to save imported file (Figure 7.16)
- 1. Save imported input file as: "Data-FMD-new.geo"
- 2. Click "Import" to complete the step

Import File Wizard	×
Save imported input file as: ourseNotes\Data\MMR-FMD-new\SatSCan\BernoulliModel\InputFiles\Coordinates.geo	Change
\bigcirc Save these settings and read directly from file source when running the analysis.	- 1
Cancel	2 Import

Figure 2.16: Dialog box to of Import File Wizard in SaTScan software to name and save coordinates file

CONTINUE

2.4.2.3 Set parameters and run the analysis

Select "Analysis" tab (Figure 2.17)

1. In "Type of Analysis" - "Retrospective Analyses" Select "Purely Spatial"

- 2. In "Probability Model" select: "Bernoulli"
- 3. In "Scan For Areas With", select "High Rates"

		- X
Input Analysis Output		
Type of Analysis Retrospective Analyses: Purely Spatial Purely Temporal Space-Time	Probability Model Discrete Scan Statistics: Poisson Bernoulli Space-Time Permutation	Scan For Areas With: High Rates Low Rates High or Low Rates
◯ Seasonal		Time A server line
 Spatial Variation in Temporal Trends Prospective Analyses: Purely Temporal Space-Time 	 Exponential Normal Uniform Time Continuous Scan Statistics: Poisson 	Units: Year Month Day Length: 1 Years
		Advanced >>

Figure 2.17: Dialog box to set analysis parameters in SaTScan software

• Select "Output" tab (Figure 2.18)

- 1. Text Output Format Main Results File: Create file name "Results" in OutputFiles folder
- 2. Geographical Output Check "KML for Google Earth" and "Shapefile for GIS software"
- 3. Column Output Format- Check "Cluster Information" and "Location Information" and "Risk Estimates for Each Location"
- Click "Advanced" -> Ensure that "Automatically launch requested maps" and "Include All Location IDs in the Clusters" are selected

Input Analysis Output	
Text Output Format	
Main Results File: sulting\SEACFMDGISCourse2021\CourseNotes\Data\MMR-FI	MD-new\SatSCan\BernoulliModel\OutputFiles\Results.txt
Geographical Output	1
Column Output Format	
Cluster Information Stratified Cluster Information Location Information Risk Estimates for Each Location Simulated Log Likelihood Ratios	
	4 Advanced >>

Figure 2.18: Dialog box to set analysis outputs in SaTScan software

["]Run analysis:

At this point you will receive error messages if mistakes were made in the creation of the files for the analysis. The error message identifies the file(s) with error(s) and may give a brief explanation of the problem. Open the file with errors in SaTScan to try to identify the problem and edit the file in another application and re-run the steps to create that file.

• Click green arrowhead button on button bar (Figure 2.19)

a sa scan - sortware for the spatiar and space- time scan statistic	2	\times
File Session Windows Help		
	3	
Input Analysis Output		
- Text Output Format		
Main Results File:		
sulting \SEACFMDGISCourse2021 \CourseNotes \Data \MMR-FMD-new \SatSCan \BernoulliModel \OutputFiles \Results.txt		
Geographical Output		
HTML file for Google Map		
KML file for Google Earth		
Shapefile for GIS software		
HTML file for Cartesian man		
Column Output Format		
ASCII dBase		
Cluster Information		
Stratified Cluster Information		
Location Information		
Risk Estimates for Each Location		
Simulated Log Likelihood Ratios		
Advanced >>		
- Addition		

Figure 2.19: Button to run analysis

CONTINUE

2.4.2.4 View results

- If you have Google Earth Pro installed on your computer, it launches and identifies the significant clusters
- The Google Earth Layers can be expanded and checked to show more or less information and the zoom and move functions can be used to change and focus your view to investigate geographic features that might influence the patterns of disease occurrence (Figure 2.20)

Figure 2.20: Google Earth Pro view of cluster locations

["]The SaTScan detailed results can be inspected in the upper window on the application's desktop (Figure 2.21)"

🔯 SaTScan - Software for the Spatial and Space-Time Scan Statistic 🦳 🗆	\times
File Session Windows Help	
🔯 C:\Users\cwcompto\Documents\MasseyWork\Consulting\SEACFMDGISCourse2021\CourseNotes\Data\MMR-F	
A	
SUMMARY OF DATA	
Study period: 2000/1/1 to 2000/12/31	
Number of locations: 5306	
Total population 5306	
Total number of cases	
Percent cases in area: 1.3	
CLUSTERS DETECTED	
1 Togstion The included + 210108 218324 218337 218332 102502 102501 102500 1(
Warnings/Errors	
Parameter Setting Warning:	
The shapefiles option requires that the 'Cluster Information' and 'Location Information'	
These options were enabled.	
<	
Email Close	
Advanced >>	

Figure 7.21: Detailed results of SaTScan cluster analysis

["]Within QGIS, locate the shapefiles produced by SaTScan in the OutputFiles folder in the Browser pane and drag the shape files e.g. Results.col onto the QGIS Map palette of the Project created earlier to visualise them (Figure 2.22)"

Figure 2.22: Detailed results of SaTScan cluster analysis

Click ► to play the video

Lesson 6 of 6

Exercise 2.2: Interpretation

["]SaTScan produces a range of results which can be useful for directing disease control measures

- 1. What are the main findings from your analysis?
- 2. What are the limitations of your findings?

Have you v	ritten down your answers for the Exercise 2.2?	
\bigcirc	Yes	
\bigcirc	No	
	SUBMIT	

CONTINUE

["]Answer keys

1. Two statistically significant (P < 0.05) clusters were identified in the study region by SaTScan- one in the south with many outbreaks, and a smaller one in the north-west of the study area with only a few outbreaks

2. First, the statistically significant clusters are depicted as circular regions, which doesn't seem to fit the large cluster in the south particularly well. It is possible to change the spatial window shape in the Analysis tab in SaTScan from circular to elliptic, which might improve the fit. Second, we assume that the village outbreaks are reported with 100% accuracy, that is, all the true outbreaks are reported at their true locations and that no false outbreaks are reported. This may not be the case always, and it is important to understand the accuracy and completeness of the data provided for analysis when interpreting the results."

Congratulations - end of lesson reached

