WOAH SRR-SEA Capacity building on risk analysis for transboundary animal disease control purposes in Southeast Asia



# UNIT 4 RISK VALUE CHAIN



Department of Emerging diseases and Global health

Animal Health Research Centre (CISA)

Institute for Agronomic and Food Research (INIA)

Spain's Research Council (CSIC)

Contact: <u>martinez.marta@inia.csic.es</u>





### **Outline**

- Value chain
- Value chain and disease risk
- Risk-based methodology
- Value chain mapping
- Exercise on identification of stakeholders
- Exercise on identification of risk pathways
- Exercise on identification of critical control points





### Value chain

A **value chain** is a sequence of activities through which animals and animal products move from production to consumption. It consists of:



Any vulnerability at these points amplifies disease risk







## Understanding the value chain

- Identification of critical points for disease introduction and transmission
- Biosecurity enhancement where disease risk is highest at various stages of the chain
- Outbreak investigation: facilitating origin and spread of diseases (backand forward-tracing)
- International trade and disease imports: to implement proper quarantine, testing, inspection protocols, etc
- Economic impact assessment: planning appropriate responses and targetting interventions to minimize disruption to unaffected parts of the chain or to model potential disruptions

## Understanding the value chain





Outbreak investigation

International trade and disease importation

Economic impact assessment

















### Value chain and disease risk

The interconnected nature of these chains increases disease risks through:



Uncontrolled animal movement and trade



inputs
(water, feed,
bedding...)



Inadequate
hygiene or
temperature
control



Poor biosecurity at markets, abattoirs or storage





## Risk-based methodology for effective disease control



- Value chain analysis: Identifies production and trade networks that influence disease movement
- Risk assessment: Determines high-risk
   hotspots where interventions are needed.
- Stakeholder involvement: Involves producers, traders, and regulators in risk reduction strategies

## Value chain mapping for disease prevention: define the objective

- 1. Identify transmission hotspots—e.g. live markets, transport routes
- 2. Trace movement pathways Map animal movement and trade networks
- 3. Track potential disease introduction points—e.g. imports, border crossings
- 4. Improve outbreak response strategies

Example: If the focus is African Swine Fever (ASF) surveillance, the map should track **pig movement**, **slaughterhouses**, **feed suppliers**, and **high-risk borders**.



## Value chain mapping for disease prevention: steps

- 1. Identify key stakeholders Farmers, traders, slaughterhouses, retailers
- 2. Trace movement pathways Map how livestock moves between regions, including informal trade
- 3. Recognize high-risk nodes Markets, transport hubs, and processing centres often act as amplification points
- 4. Assess biosecurity gaps Identify weak points in quarantine, hygiene, and surveillance
- 5. Develop risk mitigation strategies Implement measures like movement restrictions, vaccination programmes, and improved sanitation



## Identification of critical control points (CCPs) in the value chain

"Hotspots" or CCPs along the chain















### What to consider in CCP identification

- > Source and commodity: disease risk, health checks
- Movements: origin, destination, quantity. Is there a risk amplification point? i.e. premises receiving movements from many different sources or distributing to many different destinations. Method: Network analysis



CSIC

## What to consider in CCP identification: risk assessment exercise

Select one of the following





Slaughterhouse and processing plants







CSIC

- 1) Identify potential movements to and from the chosen premises
- 2) Identify potential **CCP** to assess the **value chain disease risk** at entry, spread and impact at one of these sites. Then think of **risk-based measures to**minimize the risk at each CCP

## Solution example: 1) Potential movements

| Incoming movements                                           | Outgoing movements |
|--------------------------------------------------------------|--------------------|
| Live animals: farms, households, import company              | Processing plant   |
| Slaughtered animal: slughterhouse, household, import company | Market             |
|                                                              | Coldstore          |
|                                                              | Export             |



Slaughterhouse & processing plants





## Solution example: 2) Identification of CCP

| Entry (E)                   | Spread (S)               | Impact (I)                   |
|-----------------------------|--------------------------|------------------------------|
| Origin of animals           | Lairage conditions       | Quantity processed           |
| Health status of animals    | Health status of animals | Number of sourcing farms     |
| Number of animals processed | Cross-contamination      | Distance to farms            |
| Location                    | Distance to farms        | Number of destination plants |









## Solution example: CCP risk-based measures

| Entry (E)                                             | Spread (S)                                          | Impact (I)                   |
|-------------------------------------------------------|-----------------------------------------------------|------------------------------|
| Origin of animals: animal or batch identification     | Lairage conditions: biosecurity, C&D                | Quantity processed           |
| Health status of animals: certificate, vet inspection | Health status of animals: Ante-mortem health checks | Number of sourcing farms     |
| Number of animals processed: C&D, welfare             | Cross-contamination: biosecurity, training          | Distance to farms            |
| Location: biosecurity                                 | Distance to farms: C&D                              | Number of destination plants |

Slaughterhouse & processing plants







## Quiz question: risk-based surveillance and value chain mapping

Which of the following are benefits of using value chain mapping for risk-based disease surveillance? (Select all that apply)

- √ A) Identifying high-risk disease transmission points such as markets and transport routes
- X C) Eliminating the need for laboratory testing and diagnostics
- ✓ E) Supporting rapid response planning by visualizing disease spread pathways

Value chain mapping helps identify **critical control points** for disease transmission, improves **surveillance efficiency**, enhances **early outbreak detection**, and supports **response planning**. However, **laboratory testing remains essential** for confirming disease presence.





## Classifying the risk of a value chain

Risk = Likelihood of disease entry x Amplification potential x Impact

#### Example:

| Classification | Entry                                       | Amplification                                    | Impact                                        |
|----------------|---------------------------------------------|--------------------------------------------------|-----------------------------------------------|
| Low-risk       | Strict biosecurity, controlled movements    | Strict biosecurity,<br>quarantines               | Minimal economic impact, contained outbreaks  |
| Moderate-risk  | Controlled movements, some biosecurity gaps | Some control, but spillovers possible            | Localized losses,<br>temporary market closure |
| High-risk      | Frequent movements, weak biosecurity        | High animal density,<br>weak movement<br>control | Trade bans, mass culling required             |





### Assigning risk score of a value chain

Risk = Likelihood of disease entry x Amplification potential x Impact

#### Example:

| Entry    | Amplification | Impact   | Final Risk Score  |
|----------|---------------|----------|-------------------|
| High     | High          | Severe   | Very High ( 🕮 🕮 ) |
| High     | Moderate      | Moderate | High ( <u>@</u> ) |
| Moderate | Low           | Moderate | Medium (⚠)        |
| Low      | Low           | Low      | Low ( <b>∜</b> )  |





### Risk management of a value chain

Risk = Likelihood of disease entry x Amplification potential x Impact Example:

- **⊘** Low Risk Requires routine monitoring.
- **⚠ Moderate** Needs **active surveillance and biosecurity upgrades**.
- Very High Risk Requires urgent interventions and movement controls





## Value chain map— Data for analysis

#### Farm data:

- Location
- Species
- Type of production
- Number of animals
- Health records
- Biosecurity status

#### **Movement records:**

- Date
- Source and destination
- Type of commodity
- Quantity
- Route
- Control measures pre-movement



#### Market and trade data:

- Frequency of sales (movements per day, week or month)
- Volume of trade (number of animals or products, or kgs)
- Commodity
- Origin/ destination









## Value chain map – Data for analysis

#### **Slaughterhouse data:**

- Location
- Species
- Capacity
- Source and destination
- Vet inspection
- Waste disposal
- Biosecurity

#### Disease surveillance, disease trends:

- Outbreak history and investigation records
- Surveillance design and results
- Clinical signs, suspicion records
- Lab tests
- Vaccination status



#### **Economic/market**

- Market trends
- Regional disease outbreaks







### Creating a value chain map in GIS software

- 1. Open your GIS software
- 2. Add data layers Upload livestock movement data, market locations, and disease outbreak reports.
- 3. Mark key locations Use colour codes for high-risk vs. low-risk areas.
- 4. Connect nodes Draw lines between farms, markets, transport routes, and processing centres to visualize disease transmission pathways.





### Use digital tools to visualize disease risk

- **★** Heatmaps Show high-density animal trade areas.
- Real-time outbreak tracking Integrate disease alerts with GPS data.
- Movement restriction zones Highlight quarantine and containment areas



Young et al., 2014, doi:10.1111/tbed.12292











### Analyze and interpret the map

#### Key questions to answer:

- Where are the disease hotspots?
- Which transport routes are high-risk?
- Which farms/markets need urgent surveillance?
- **Are there seasonal disease patterns?**





## Monitor and update the map regularly

Since disease dynamics change over time, value chain maps need to be regularly updated. Accuracy could be maintained through:

**Monthly surveillance reports** – Update **animal movement and outbreak** data.

☐ Crowdsourced disease alerts — Farmers can report symptoms via mobile apps.

New trade route monitoring – Identify emerging high-risk corridors.

¶ Integrating machine learning — Al-based tools can predict future outbreak risks.
CISA

## Conclusion. Digital value chain mapping is a game-changer

- Prevents disease outbreaks by identifying risk hotspots early.
- Optimizes surveillance efforts in rural areas.
- **Q** Enhances traceability and movement control measures.
- Improves communication between farmers, veterinarians, and policymakers.





### References

- FAO. 2011. A value chain approach to animal diseases risk management Technical foundations and practical framework for field application. Animal Production and Health Guidelines. No. 4. Rome.
- FAO, 2020. Introduction to Value Chain Analysis to support animal disease risk management.
- Homan, S. and Anderson, M. 2021 OIE Transborder Animal Value Chain Analysis in SE Asia and Pacific. Using a sociological approach to animal value chain analysis for risk management. Modules 1-5.
- Pfeiffer, D., 2023. Transmission dynamic in different production and value chain systems. Global consultation on ASF control. FAO Headquarters, Rome, Italy, 12/12/2023-14/12/2023
- Yu, Q. 2019. Pig production system and value-chain in SEA. 1st WOAH SGE-Asia.
- Scientific articles:
  - Berends et al., 2021. https://doi.org/10.1016/j.agsy.2021.103265
  - Bin Aslam et al., 2020. https://doi.org/10.3389/fvets.2020.00361
  - Carron et al., 2007. <a href="https://doi.org/10.1016/j.prevetmed.2017.08.013">https://doi.org/10.1016/j.prevetmed.2017.08.013</a>
  - Lee et al., 2022. https://doi.org/10.3389/fvets.2022.853825
  - Muloi et al., 2018. https://doi.org/10.1016/j.prevetmed.2018.09.010
  - Ouma et al., 2018. <a href="https://doi.org/10.1016/j.prevetmed.2017.12.010">https://doi.org/10.1016/j.prevetmed.2017.12.010</a>
  - Shyaka et al., 2022. <a href="https://doi.org/10.3389/fvets.2021.720553">https://doi.org/10.3389/fvets.2021.720553</a>



