Member's update on FMD, PPR and LSD

Hong Kong Special Administrative Region, China

Dr. Jeremy Ho

Senior Veterinary Officer (Animal Health)
Agriculture, Fisheries and Conservation Department
Hong Kong SAR, China

22 – 23 July 2025 Tokyo, Japan

Disease Situation – FMD

- Domestic: no case reported since May 2019
 - last case was reported on a local pig farm

Disease Situation – FMD

Susceptible population

Susceptible Livestock population

- > 43 local pig farms, with maximum capacity of 74 640 pigs
- ➤ 1 small scale dairy farm for veterinary teaching purpose, with around 60 cattle

Other identified susceptible population

- Feral cattle and water buffalo in Hong Kong country parks
 - > 860 brown cattle and 180 water buffalo (2022 population survey)
- Wild pigs population estimated to be around 900 in 2024

Disease Situation – FMD

Disease Status

- First identified in the 1950s, being endemic since then
- Passive surveillance by monitoring of clinical disease
 - Diagnostic method: RT-PCR and rRT-PCR
 - Samples tested positive sent out to WOAH Reference Laboratory (The Pirbright Institute)
- Common identified serotype: O (Cathay) on pigs
- Last case reported in May 2019 on pigs
 - No clinical signs or suspected case reported from livestock population or other identified susceptible population since then

Disease Prevention and Control – FMD

- Disease Notification
- Import control
- Monthly farm inspection
- Vaccination (non-compulsory)
 - Common vaccine strains for pig farms: RE-O-MYA98/JSCZ/2013, O/PanAsia/TZ/2011, RE-A/WH/09
 - For cattle in dairy farm: FMD serotypes O, A in inactivated form (Aftovax by Boehringer Ingelheim)
- Enhanced biosecurity measures of pig farms
- Slaughterhouse practice was one of the major challenges to prevent and control FMD previously

Import Permit

Challenges and Possible Solutions – FMD

Biosecurity measures established to tackle ASF outbreak also effective against FMD

Source Control 源頭控制

Enhanced cleansing and disinfection for pig transportation vehicles 運豬車輛加強清潔及消毒

日日清

Disease Situation – LSD

Susceptible population

- Feral cattle and water buffalo in Hong Kong country parks
 - > 860 brown cattle and 180 water buffalo
- ➤ 1 small scale dairy farm for veterinary teaching purpose with around 60 cattle
- ➤ No surveillance and testing before the first outbreak in 2020, via passive surveillance by monitoring of clinical disease
 - Risk pathway: Vector? Import cattle?

Disease Situation – LSD

In Feral Cattle

- In October 2020, some feral cattle in Hong Kong developed multi-focal cutaneous nodules consistent with lumpy skin disease (LSD)
- > In early November 2020, more similar cases were detected
- The clinical course lasted for 2 3 weeks
- Clinical signs:
 - Skin lesions
 - Fever
 - Malaise
 - Anorexia
 - Superficial lymphadenopathy
 - Nasal and/or oral ulcers

Disease Situation - LSD

In Feral Cattle

- Samples were submitted to the governmental veterinary laboratory (Tai Lung Veterinary Laboratory, TLVL) for testing, including **histopathological examination**
 - As gross and histological pathology supported the diagnosis, samples were sent to the WOAH Reference Laboratory at The Pirbright Institute for confirmatory testing
- Morbidity 20 30% (only in feral cattle, no water buffalo was affected)
 - Water buffaloes in Hong Kong seemed to be unaffected, both clinically and serologically
- Last reported by public members in March 2021
- No suspicious cases in feral cattle after March 2021

Laboratory Capacity

Postmortem examination on euthanized severely affected cattle

- Gross findings
 - Widespread, randomly distributed cutaneous, and subcutaneous nodules ranging from 1 to 40 mm in diameter
 - Multiple superficial lymph nodes were enlarged and haemorrhagic
- Histopathological findings
 - Necrotizing vasculitis that started from the deep cutaneous plexus with abundant surrounding infiltrates of predominate large histiocytes and fibroblasts.
 - The histiocytes frequently contained a large, prominent eosinophilic or amphophilic, intracytoplasmic inclusion bodies and had marginated chromatin

Marked, multi-focal, necrotizing, and histiocytic dermatitis with (upper) necrotizing vasculitis and (lower) intracytoplasmic inclusion bodies

Laboratory Capacity

- Tissue samples were submitted to the WOAH Reference Laboratory for LSD at The Pirbright Institute, UK
- LSDV was isolated from skin samples taken from three animals and named LSDV/HongKong/2020/01 to 03
- Whole genome sequencing and phylogenetic analysis revealed the LSD outbreak was caused by a different strain of LSDV than the LSD epidemic in the Middle East and Europe in 2015 – 2018.
- Test in TLVL from Oct 2020 to Jun 2025
 - PCR: 294 tests
 - Serology: 127 tests

Prevention and Control Measures – LSD

In Feral Cattle

- Disease was self-limiting in majority of the cases
- Affected animals recovered
- Natural herd immunity seemed to build up
- No clinical cases since March 2021
- Vaccination is not feasible in feral cattle population

Prevention and Control Measures – LSD

- Passive surveillance in form of observations by the AFCD cattle team, country park staff and reports of sick cattle from the public
- Serological surveillance
 - Purpose: to see if LSD is still present in the feral cattle population
 - Sampling target: all the cattle that were born after March 2021 (just less than 2 years old) but older than 3 months old
 - Sampling period: started after October 2022
 - Convenient sampling: 14 calves/juveniles sampled
 - Result: No clinical sign and all seronegative

Disease situation – LSD

- In May 2024, a local teaching dairy farm with total cattle size around 60 reported 16 yearling cattle showed lesions resembling LSD
 - Lesions are multiple, well-defined, firm cutaneous nodules.
- They belong to a group of 19 cattle with average age of 15 month-old
- Vaccinated against LSD in the previous year but the booster was overdue for a few months

Disease situation – LSD

- The lesions were mild in most cases
- 3 of the 16 cattle have **extensive lesions** with clinical signs:
 - Extensive skin lesions
 - Fever high up to 40.5C
 - Anorexia
 - Lacrimation
 - Nasal discharge
 - Hypersalivation
 - But still bright and active

Prevention and Control Measures

- Isolation of the affected cattle to a shed with mosquito netting and fog the entire farm with insecticide
- Revaccination the herd against LSD with Bovillis Lumpyvax (Neethling strain)
- Provide supportive treatment to the severely affected individuals with antibiotic and NSAIDs

Prevention and Control Measures

- No further LSD cases reported afterwards
- Mosquito netting removed after 56 days (two incubation periods with reference to WOAH Terrestrial Code) without new cases
- All affected cattle recovered after supportive treatment; no mortality or euthanasia was necessary

Challenges and Possible Solutions – LSD

- The mode of entry of the virus to Hong Kong is not known
 - It is possible that LSD spread to Hong Kong through flying vectors (e.g. mosquitoes)
- AFCD management plan for LSD is mainly aimed to
 - Minimize the impact of this disease on the welfare of animals
 - Reduce the impact to other commercial cattle in the broader region
 - Protect the historically valuable and irreplaceable local feral cattle and water buffalo populations
- Prevention and control measures as possible solutions that had been taken into consideration
 - Surveillance
 - Vaccination
 - Supportive treatment
 - Euthanasia for severe cases if necessary

Challenge and possible solutions

- Vaccination on feral cattle
- Movement control and zoning
- Vector-centrel
 - All the above are not feasible due to the feral nature of the feral cattle and water buffalo populations
- Vaccination would be conduct annually on Dairy Farm
- Stamping out?
 - Practically feasible but public perception are of major concern
 - May not be necessary as the disease is controllable on Dairy Farm by Vaccination

Additional Reading

https://onlinelibrary.wiley.com/doi/10.1111/tbed.14304

Disease situation – PPR

Proposal for Future Activities

- Establish information sharing platform and mechanism among Members in East Asia
- Plan and coordinate training activities for East Asia Members on transboundary animal diseases

Thank you

Dr. Jeremy HO

Senior Veterinary Officer (Animal Health)
Agriculture, Fisheries and Conservation Department
Hong Kong SAR, China

