

Findings of LSD impact assessment study in Asia

Veerasak Punyapornwithaya (DVM, Msc, PhD) Faculty of Veterinary Medicine Chiang Mai University

Team members

- Veerasak Punyapornwithaya : PI, data analysis, spatial modelling
- Waraphon Phimpraphai (Kasetsart University) : stakeholder and value chain analysis
- Noppawan Buamithup (Department of Livestock Development: DLD) : stakeholder and value chain analysis, LSD prevention and control policy
- Orapun Arjkumpa (DLD) : Risk factors and economic-impact of LSD
- Md. Taohidul Islam (Faculty of Veterinary Science Bangladesh Agricultural University) : PI for the study in Bangladesh

World Organisation for Animal Health

Final Report Study to assess the impact of Lumpy Skin Disease (LSD) in Asia

Download link for full report

https://rr-asia.woah.org/app/uploads/2024/06/Final-Report_Study-to-assess-the-impact-of-LSD_June-2024.pdf

Outline

- Introduction and objectives
- Regional study
- In country study: Thailand and Bangladesh
- Summary

Literature review

Some key findings related to : the impact of LSD outbreaks LSD Prevention and control strategy

Resources and references

- WAHIS data
- WOAH regional meeting on LSD
- WOAH-CMU project (data analysis, field study)
- Country reports
- Research Publications

World Organisation for Animal Health Founded as OIE

WAHIS

Lumpy skin disease (LSD) coordination meeting for South East Asia

Ŏ

Distribution of LSD outbreaks in Asia

Some key findings from the literatures

- Risk factors for LSD outbreaks in Asia include animal movement, insect vectors, and low farm biosecurity.
- Financial losses per LSD case were USD 110 in Bangladesh and USD 119–413 per farm in Thailand due to reduced milk sales (consider only milk losses).
- Thailand is reported a nationwide vaccination campaign, highlighting its effectiveness.

Some key findings from the literatures-2

- Clusters of LSD outbreaks were identified in several areas across the region.
- Phylogenetic analysis showed LSDV strains in Vietnam closely resemble those from China, Cambodia, Thailand and Indonesia.
- LSDV strains in Myanmar were similar to those identified in Bangladesh and India.

Mazloum A, Van Schalkwyk A, Babiuk S, Venter E, Wallace DB, Sprygin A. Lumpy skin disease: history, current understanding and research gaps in the context of recent geographic expansion. Frontiers in Microbiology. 2023;14:1266759

Vaccination is the most common control measure

Type of vaccine

Country	Vaccine	Trade Brand
Vietnam	Homologues Heterologous	LumpyShield-N® / LumpyShield-G® JovivacStrong®
Thailand	Homologous	LUMPYVAX®, MEVAC®
Malaysia	Homologous	Bovivax LSD-N®, LUMPYVAX®, MEVAC®
Cambodia	Homologous	LUMPYVAX®,
Indonesia	Homologous	LUMPYVAX®, MEVAC®
India	Homologous	Lumpi-ProVacInd®

Spatial Epidemiology of LSD outbreaks

 to ascertain the existence of spatio-temporal clusters of LSD outbreaks in the Asian countries

LSD outbreak locations by year

Directional analysis

Determine spatial distribution trend of LSD outbreaks considering date or date and number of cases

Standard deviation ellipses were obtained from the Yuill method, with (green line) and without weighting (blue line) and CrimeStat with (pink line) and without weighting (red line) based on lumpy skin disease outbreak data from **2006 to 2023 (May)**.

Т

Standard deviation ellipses were obtained from the Yuill method, with (green line) and without weighting (blue line) and CrimeStat, with (pink line) and without weighting (red line) based on lumpy skin disease outbreak data from **2021 to 2023 (May)**.

Wilhelm and Ward, 2023

Spatio-temporal model

- Determine clusters of LSD outbreaks considering spatial and temporal dimensions
- Cluster of high LSD cases

- 16 spatio-temporal models were investigated
- Space-time permutation
- Space-time Poisson
- Asia data
- South East Asia data

No	Type of analysis	Model	Area	Time	Maximum temporal
				aggregation	cluster size
1	Space-time	Poisson	Asia	Year	50% of the study period
2	Space-time	Poisson	Asia	Year	1 year
3	Space-time	Poisson	Asia	Month	50% of the study period
4	Space-time	Poisson	Asia	Month	1 month
5	Space-time	STP	Asia	Year	50% of the study period
6	Space-time	STP	Asia	Year	1 year
7	Space-time	STP	Asia	Month	50% of the study period
8	Space-time	STP	Asia	Month	1 month
9	Space time	Poisson	SEA	Year	50% of the study period
10	Space time	Poisson	SEA	Year	1 year
11	Space-time	Poisson	SEA	Month	50% of the study period
12	Space-time	Poisson	SEA	Month	1 month
13	Space-time	STP	SEA	Year	50% of the study period
14	Space-time	STP	SEA	Year	1 year
15	Space-time	STP	SEA	Month	50% of the study period
16	Space-time	STP	SEA	Month	1 month

Number of LSD outbreak clusters

Model	Description	Area	Number of clusters	Model	Description	Number of clusters	Table number
1	Space time - Poisson model	ASIA	8	9	Space time - Poisson model	1	3.9
2	Space time - Poisson model	ASIA	8	10	Space time - Poisson model	1	3.10
3	Space time - Poisson model	ASIA	2	11	Space time - Poisson model	2	3.11
4	Space time - Poisson model	ASIA	4	12	Space time - Poisson model	2	3.12
5	Space time - STP model	ASIA	6	13	Space time – STP model	6	3.13
6	Space time - STP model	ASIA	7	14	Space time – STP model	6	3.14
7	Space time - STP model	ASIA	9	15	Space time – STP model	7	3.15
8	Space time - STP model	ASIA	9	16	Space time – STP model	8	3.16

Example of the spatio-temporal results

Print

Significant clusters All clusters Toggle display between significant and all clusters.

- Show clusters using:
- Display options for clusters.

Show all location points Toggle display of location points.

Fit map to viewport Attempts to keep entire map in view.

Display Data: 8 Clusters 865 Cluster Locations 1245 Total Locations

Generated with SaTScan v9.6

²⁸ 23

- SEA region
- SPT model
- MSCS = 50%
- MTCS = 1 month

Type of models and parameter settings affect on the results (e.g., cluster size, number of cases, time period).

FIGURE 1: The LSD epidemic outbreak point and spatiotemporal clusters areas in the Asian continent (January 2012 to September 2022).

Li et al., 2023

Summary

- LSD outbreak clusters were identified in Western, Southern, and Southeastern Asia.
- Primary clusters in Southeast Asia were detected in Thailand and Indonesia.
- Parameter settings influenced the results, emphasizing the need to align settings with defined objectives.
- LSD outbreaks across Asia generally spread west to east.
- In Southeast Asia, outbreaks followed a northeast-tosouthwest trajectory.

2. Strategies and practices for preventing and controlling LSD outbreak

To assess management and control strategies of farmers, traders, and veterinary services during and post LSD outbreaks in selected countries to identify best practices

Khokkho dairy cooperative Mahasarakham province Thailand

Bangladesh Milk Producer's Cooperative Union

Ltd. (known as 'Milk Vita') at Shahjadpur upazila of Sirajganj district and Bhaluka upazila of Mymensingh district

Thailand

Management practices

Managements	Yes	No
Farm has a fence	90	0
Farm shares a water source with other farms	0	90
Having other animals (e.g., poultry) on the farm	74	16
Using disinfectant	87	3
Cattle on the farm have a chance to come into contact	2	88
with cattle from other farms		
Keeping a log-book record for visitors	86	4
Farm has a deworming program for cattle	89	1
Insects are present on the farm	90	0
History of purchasing cattle before the LSD outbreak	8	82

• Stakeholder analysis

Animal traders play important role for LSD outbreak and spread

Farmers and the cooperation among stakeholders play important role for LSD prevention and control

Bangladesh

Results

Risk factors	Odds ratios	95% Confidence Interval	P-value
Raise cattle by public grass grazing	2.95	1.03 – 9.51	0.053
Lacking vector management practice	3.15	1.39 – 7.47	0.007
Previous history of LSD outbreak	52.49	20.20 - 165.82	<0.001

° 30

- In the Thailand study, all farms in the study area were naïve herds, with LSD vaccination administered only two weeks before or during the outbreaks.
- In the study from Bangladesh, 39% of farms (n=78/200) reported a previous history of LSD in the herd, while only 24% (n=49/200) had administered LSD vaccination.

Value chain analysis and socio-economic impact of lumpy skin disease outbreaks on key stakeholders within the value chain

To assess the socio-economic impact of LSD outbreaks on key stakeholders along the value chain

⁸ 38

Value chain analysis

Thailand

Khokkho Dairy Cooperative

the connection of stakeholders in the value chain

Preliminary knowledge is valuable for disease prevention and control

stakeholders engage with each other during the outbreak

Bangladesh

Dairy and beef cattle value chain

• Thailand's dairy industry operates on a larger scale with more extensive herd sizes, while beef herd sizes are similar in both countries.

43

Thailand

- Primary loss: mortality of LSD-affected cattle.
- Vaccination cost was lower than treatment cost

Items	Mean±Standard	USD *	
	deviation (Thai Bath)		
Loss due to mortality of cattle	64,000±61,366.46	1,801± 1,727	
Treatment cost	5,227 ±7,273.22	147± 204	
Insecticide cost	2,026 ±1,430.01	57± 40	
Disinfectant cost	1,858±1,435.26	52± 40	
Loss due to reduction in milk sold	8,084±1,722.71	227± 48	
Vaccination cost	3,327±34,66.17	93± 97	
Other costs	2,903 ±5,651.59	81± 150	
Total economic loss	87,429 ± 74,903.06	2,461 ±2,108	

*Approximate 35.5 Thai Bath equal 1 USD

Average losses = 2,461 USD per farm

Bangladesh

- All 100 farms incurred treatment costs.
- Cattle mortality resulted in losses for 19 farms.
- Vaccination costs were reported by 9 farms.

-47

ltem	Frequency*	BDT (Mean ± SD)	USD
Treatment cost	100	5618.80 ± 6553.71	51.25±59.78
Insecticide cost	33	751.51 ± 606.89	65.17±55.28
Disinfectant cost	25	472.00 ± 399.50	4.30±3.64
Vaccination Cost	9	644.44 ± 598.15	5.87±5.45
Milk yield loss	34	14168.38 ± 33648.95	129.13±306.67
Loss due to animal died	19	116842.11 ± 90142.03	1064.90±821.56
Losses due to hide or skin	2	750 ± 353.55	6.84±3.22
damage			

*Frequency values indicate the number of respondents reporting the cost or losses for each category. The mean and standard deviation (SD) are calculated based on the frequency, not the total number of respondents for each group.

Average losses = 283 USD/household

- In both countries, the major losses were attributed to cattle mortality and reduced milk production.
- Differences in economic impact between the two countries can be attributed to Thailand's larger <u>herd sizes</u>, which amplify production losses.
- In smallholder farms, where cattle are valuable assets, the loss or sickness of cattle has significant social and economic impacts, affecting family livelihoods and stability.

Summary-1

- LSD leads to significant financial losses.
- Spatio-temporal analysis revealed clusters of LSD outbreaks across multiple regions.
- Genetically similar LSD strains were detected in several countries.
- Vaccination remains a key strategy for LSD prevention and control.

Summary-2

- Low biosecurity and poor insect vector control are major risk factors for naïve herds.
- Collaboration among stakeholders is essential for effective control.
- The ASEAN LSD Prevention and Control Strategy [2024-2030] has been developed.

Acknowledgement

- Working Group Members
- WOAH SRR SEA
- WOAH RRAP
- WOAH HQ
- Thanks for funding support from Australia, DAFF Capacity Building Project

Australian Government

Department of Agriculture, Fisheries and Forestry

