WOAH Collaborating Centres consortium for Food Safety in Asia and Pacific Seminar Series 2023 Session 3 'Approaches and research to reduce antimicrobial use' January 23rd, 2024

Risk assessment trials for vegetables and aquaculture

Kohei Makita

Professor of Veterinary Epidemiology

Rakuno Gakuen University

Ebetsu, Japan

Rakuno Gakuen University School of Veterinary Medicine WOAH Collaborating Centre

for Food Safety

Outline

- What is risk assessment?
- How a risk assessment contributes to reducing antimicrobial use (AMU)?
- Risk assessment trial for vegetable
- Risk assessment trial for aquaculture

What is "risk"?

• Risk is a probability of occurrence of a scenario and its size of impact

Citizens enjoying

Great East Japan Earthquake and explosion of Fukushima Daiichi plant 2011 March 11

WOAH Risk analysis for antimicrobial resistance

Outline

- What is risk assessment?
- How a risk assessment contributes to reducing AMU?
- Risk assessment trial for vegetable
- Risk assessment trial for aquaculture

The resistance against last resort antibiotic, colistin is transmitted with plasmid

- Approved as a veterinary drug and a growth promoter in Japan in 1950s
- In 2015, colistin was approved as an injectable human drug to prepare for the increase of multidrug resistant gram negative bacteria
- Only chromosomal mutation was known for colistin, but plasmid-mediated colistin resistance mechanism *mcr* was discovered in 2015

THE LANCET

1000 bp

Zurfluh K et al. 2016. Antimicrobial Agents and Chemotherapy 60-5589-5591.

Global spread of mcr-1

Wang et al. 2018. nature communications 9:1179.

- Effectiveness of the risk management was quantitatively estimated
- Efforts of reduction of diarrhea and pen level treatment should be encouraged

a) Risk in 2017

b) Risk in 2018

Table 7. Results of scenario analyses showing the proportion of finisher pigs with *mcr-1-5*-mediated colistin-resistant *E. coli* dominant in the gut using the 2017 model (mean, median and 95% credible interval)

Scenario	Overall	Small-scale farms	Medium-scale farms	Large-scale farms
Default	5.5%, 5.2%	4.6%, 4.3%	5.2%, 4.8%	5.8%, 5.4%
	(4.2 – 10.1%)	(3.3 – 9.0%)	(3.9 – 9.6%)	(4.3 – 10.5%)
Reduction of edema disease				
50% reduction	5.5%, 5.2%	4.6%, 4.3%	5.1%, 4.8%	5.7%, 5.4%
	(4.2 – 10.0%)	(3.3 – 9.0%)	(3.8 – 9.6%)	(4.4 - 10.4%)
80% reduction	5.5%, 5.2%	4.6%, 4.2%	5.0%, 4.7%	5.8%, 5.4%
	(4.2 – 10.1%)	(3.3 – 9.0%)	(3.7 – 9.6%)	(4.4 – 10.5%)
Reduction of diarrhea				
50% reduction	5.2%, 4.9%	4.6%, 4.2%	4.9%, 4.6%	5.3%, 5.0%
	(3.9 – 9.7%)	(3.3 - 8.9%)	(3.6 – 9.3%)	(4.1 – 9.9%)
80% reduction	5.0%, 4.7%	4.6%, 4.2%	4.8%, 4.5%	5.1%, 4.8%
	(3.7 – 9.4%)	(3.3 - 8.9%)	(3.5 – 9.1%)	(3.8 - 9.7%)
Reduction of therapeutic colistin				
50% reduction	5.1%, 4.8%	4.6%, 4.3%	4.9%, 4.6%	5.2%, 4.9%
	(3.9 – 9.4%)	(3.3 – 9.0%)	(3.6 – 9.2%)	(4.0 – 9.7%)
80% reduction	4.8%, 4.5%	4.6%, 4.3%	4.7%, 4.4%	4.9%, 4.5%
	(3.6 – 9.2%)	(3.3 – 9.1%)	(3.5 – 9.1%)	(3.6 – 9.1%)
Stoppage of therapeutic use	4.6%, 4.3%	4.6%, 4.3%	4.6%, 4.3%	4.6%, 4.3%
	(3.4 - 8.7%)	(3.3 – 9.1%)	(3.4 - 8.9%)	(3.4 - 8.8%)
Pen level treatment (20% of pigs)	4.7%, 4.4%	4.6%, 4.3%	4.7%, 4.4%	4.7%, 4.4%
	(3.5 - 8.7%)	(3.3 – 9.0%)	(3.5 - 8.7%)	(3.6 - 8.7%)

Take home message: Risk assessment provides quantitative evidence for a rational policy decision, and evidence-based guidance for farmers, stakeholders and consumers

Outline

- What is risk assessment?
- How a risk assessment contributes to reducing AMU?
- Risk assessment trial for vegetable
- Risk assessment trial for aquaculture

Quantitative release assessment for betalactamase producing *Escherichia coli* of dairy origin in vegetables

Kohei Makita¹, Ayaka Okamura¹, Akira Fukuda¹, Tetsuo Asai², Yoko Shimazaki³, Masaru Usui¹ 1 Rakuno Gakuen University; 2 Gifu University; 3 National Veterinary Assay Laboratory, Japan

- Outbreaks of food poisoning associated with vegetables contaminated with *Escherichia coli* have been reported globally.
- This study was conducted to assess the probability of releasing betalactamase (BL)-producing *E. coli* of dairy farm origin in vegetables in Japan.

Materials and methods

- Hazard: BL-producing *E. coli* with *bla* gene of dairy cattle origin
- Identification of risk pathways using fault tree
- Modelling
 - Interviews with vegetable producers and fertilizer companies
 - Data collections from
 - Field experimental data: dairy farms, and Rakuno Gakuen University farm
 - Clinical data (indication diseases and beta-lactam antibiotics use): Hokkaido Agricultural Mutual Relief Association (AMRA)
 - Detection of *bla* gene in *E. coli* from feces of cattle sampled at slaughterhouses: Japan Veterinary Antimicrobial Drug Resistance Monitoring (JVARM)
 - Release assessment and sensitivity analyses 1000 iterations in R

Materials and methods

- Model framework (bla entered dairy farms to vegetable) -

Estimating BL-producing E. coli concentration on vegetable surface and inside vegetable body using farm - soil vegetable simulation models

Days between fertilization and harvesting

Results Occurrence of indication diseases and use of beta-lactam antibiotics

Results

Release assessment 1: from dairy farms to vegetable fields

in fresh feces in *bla* positive farms was 3.32 log10 CFU/g (95%CI: 3.31 – 3.32)

Log10CFU/g of the day applied to soil

Results

Release assessment: bacteria concentrations in soil and in vegetable bodies at harvest in a farm applying immature manure

Results

Sensitivity analysis for release assessment: a scenario that a farm applies fresh manure to soil

Human can be exposed to BL-producing *E. coli* through soil attached to vegetables if fresh manure is used for fertilization

Discussion

- Level of releasing BL-producing *E. coli* of dairy farm origin through vegetable consumption in Japan was assessed low
- Application of immature manure on soil does not pose health risks significantly, but application of fresh manure does
- Washing vegetables should be encouraged
- Prudent use of antibiotics remains important

Outline

- What is risk assessment?
- How a risk assessment contributes to reducing AMU?
- Risk assessment trial for vegetable
- Risk assessment trial for aquaculture

Risk assessment trial for aquaculture

- Sharing some new insights from recent and ongoing researches
 - Release assessment needs to be conducted in a flexible manner as aquaculture systems are diverse
 - Selection of hazard is challenging as pathogenic bacteria for aquaculture are different from human's pathogenic bacteria

Emerged risk of fish-borne disease in humans

- Freshwater fish associated with Group B Streptococcus (GBS) sequence type 283, either infection in fish or post-harvest contamination
- Consuming uncooked or undercooked fish is common in rural communities in Asia
- Bacteremia, sepsis and meningitis in adult humans

Notes: A) High mortality in floating cage tilapia farms in Brazill; B) Erratic swimming of moribund red tilapia in Malaysia; C) Ascites in tilapia farms in Brazil; and D) Exophthalmia in moribund red tilapia in Malaysia.

Figure 4. Clinical manifestations of GBS disease in tilapia caused by GBS ST283

Food and Agriculture Organization of the United Nations

RISK PROFILE

Group B *Streptococcus* (GBS) *Streptococcus agalactiae* sequence type (ST) 283 in freshwater fish Fault tree

Challenges in prudent use of antibiotics in aquaculture

- Monitoring system for resistant bacteria
- Reporting system for AMU
- License for drug purchase
- Supervision by veterinarians
- Technical support for fish farming

Thank you very much for your attention!

- Acknowledgements
 - Japan Veterinary Antimicrobial Monitoring System (JVARM)
 - Food Safety Commission of Japan
 - JICA Agri-Net program
 - Chulalonkorn University
 - Kasetsart University

