

Founded as OIF

Fourth LSD coordination meeting For South-East Asia 28-29 November, 2023 Thailand

Update on Global and Regional lumpy skin disease situation

Veerasak Punyapornwithaya DVM MS PhD Faculty of Veterinary Medicine Chiang Mai University, Thailand

The First Lumpy Skin Disease Outbreak in Thailand (2021): Epidemiological Features and Spatio-Temporal Analysis

Spatio-temporal patterns of lumpy skin disease outbreaks in dairy farms in northeastern Thailand

Proventie Veuernary Wedene	Preventive Veterina	ry Medicine	Forecasting of daily new lumpy skin disease cases in Thailand at diff using fuzzy logic time series, NNAR, and ARIMA methods	erent stages of the epidemic
Infectious Disease Modelling	Infectious Disease	Modelling	Modelling epidemic growth models for lumpy skin disease cases in Thailand using nationwide outbreak data, 2021-2022	
	viruses	Multi Estim	by Skin Disease Outbreaks in Africa, Europe, and Asia (2005-2022): ple Change Point Analysis and Time Series Forecast nating the Transmission Kernel for Lumpy Skin Disease Virus from Dat and in 2021	ta on Outbreaks in
PLC	DS ONE		ying the patterns and sizes of the first lumpy skin disease outbreak cl high degree of dairy farm aggregation using spatio-temporal models	usters in Northern Thailand
ve	terinary sciences		r Characterization and Phylogenetic Analysis of Lumpy Skin Disease llected from Outbreaks in Northern Thailand in 2021	10 Publications

The first study on the impact of lumpy skin disease outbreaks on monthly milk production on dairy farms in Khon Kaen, Thailand

10 Publications
1 Project with WOAH

Development of in-house ELISA for detection of antibodies against lumpy skin disease virus in cattle and assessment of its performance using a bayesian approach

Presentation outline

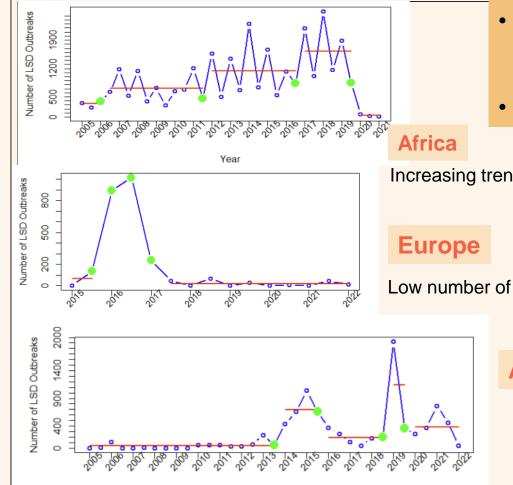
Resources and references

- WAHIS data
- WOAH regional meeting on LSD
- WOAH-CMU project (data analysis, field study)
- Country reports
- Research Publications

World Organisation for Animal Health Founded as OIE

Lumpy skin disease (LSD) coordination meeting for South East Asia

World Organisation for Animal Health Founded as OIE



LSD outbreak situation

Year

- WAHIS: the number of LSD outbreak reports from 2005-2022.
- Six month report

Increasing trend from 2005 until 2019, followed a sharp drop.

Low number of outbreaks since the second semester of 2017

Asia High number of outbreaks in 2021

Anwar et al, 2022

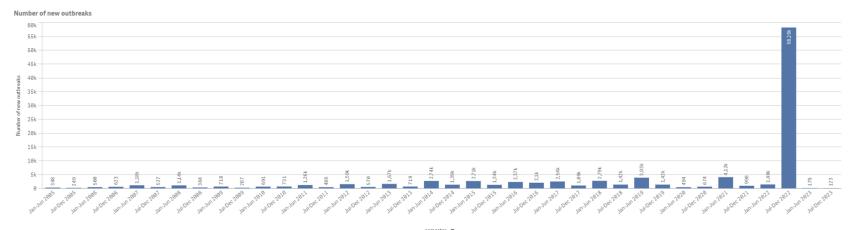
The most updated data : online data from WAHIS website

World Organisation for Animal Health Founded as OIE

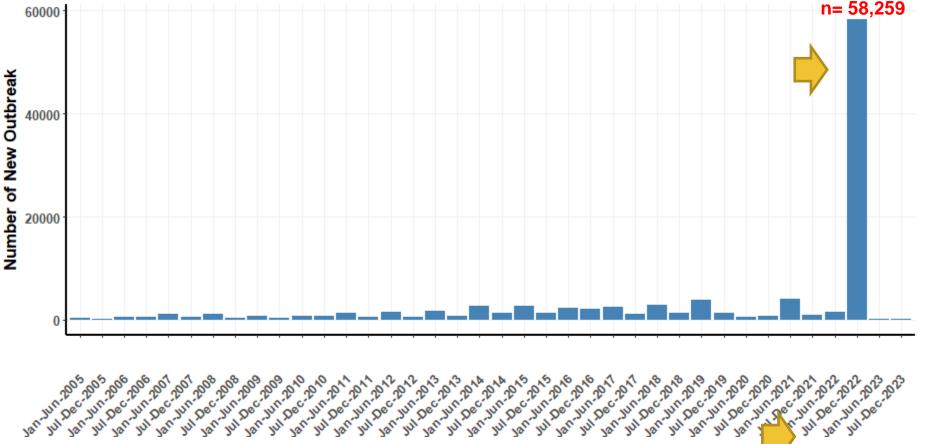
HOME >>> QUANTITATIVE DATA DASHBOARD

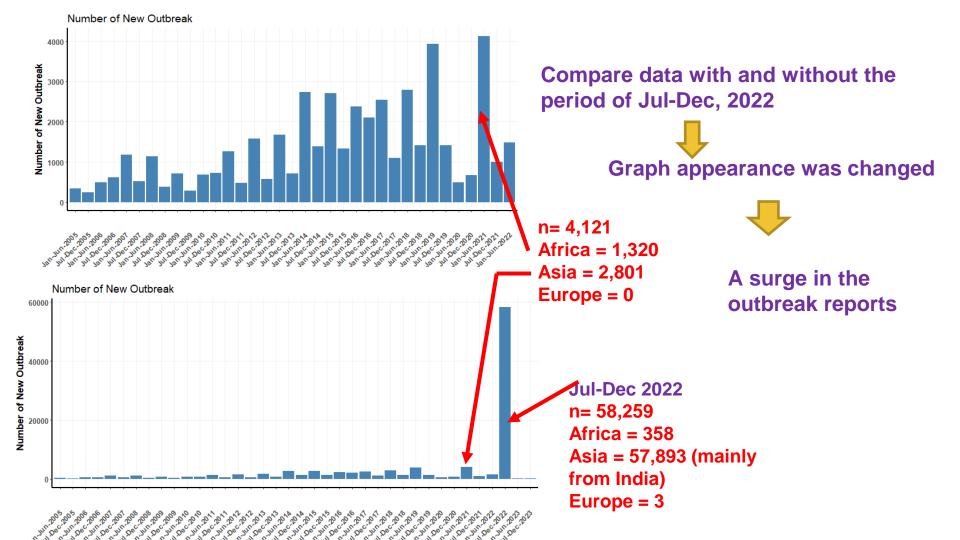
Quantitative data

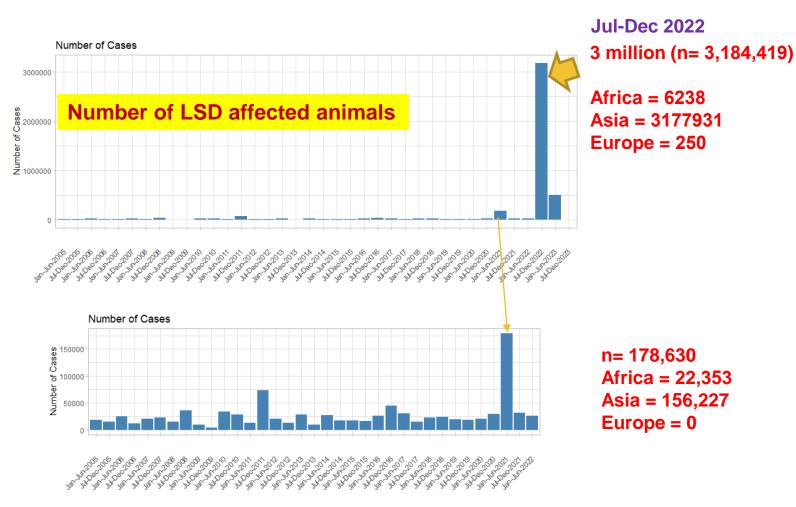
ata contained on the official reports (immediate notifications and follow-up reports, six-monthly reports and annual reports) submitted by the relevant Veterinary Services through OIE-WAHIS. For visualization please information, please go to the specific "Reports" section. Please note, this dashboard is refreshed every 1-2 hours.

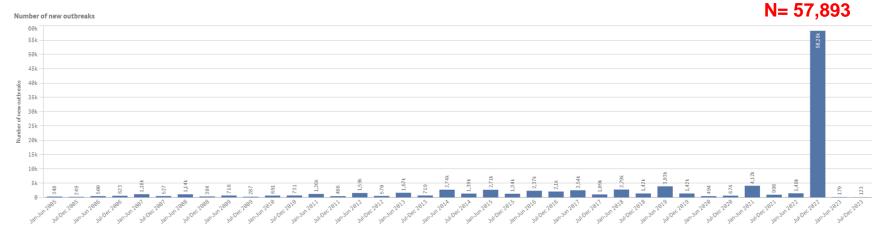

World region	Country	Animal type	Disease	
	Animal category	Year	··· (i) × ·	
	Please select at least on	e filter to view the data	Q, lumpy ×	-
ice is currently ongoing and may	impact your user experience an desk. Currently the dashbo		ISS	ed,

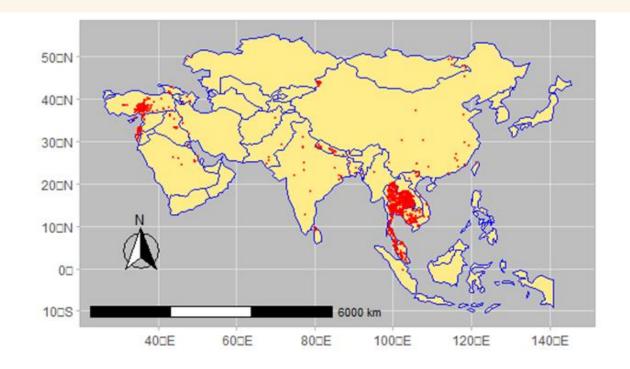
Visualization results

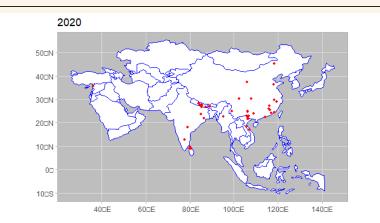

Number of LSD outbreak reports for every 6 month

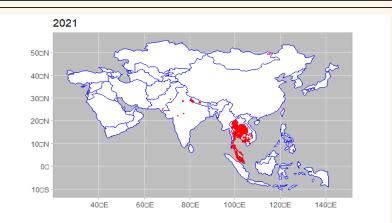

Data in excel format is also available to be download



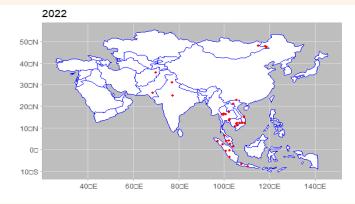

Number of New Outbreak


Please be aware that displaying a large quantity of data may increase the loading time

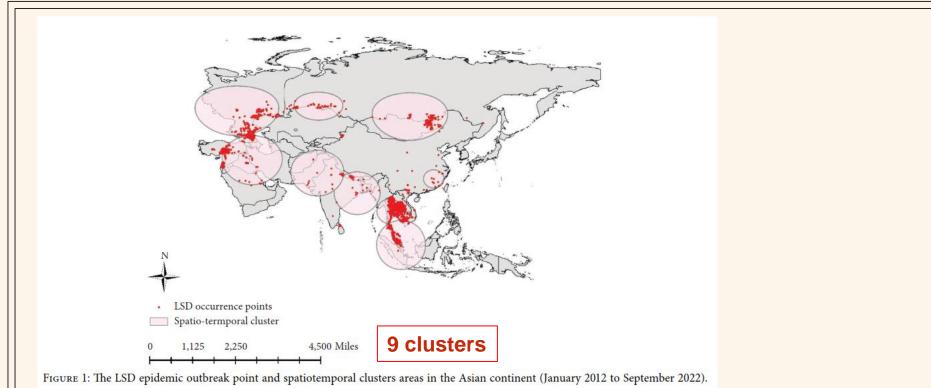

- The high number of LSD outbreak may be due to the different in defining an outbreak unit
- Province / district / subdistrict / village / farm
- Compare the number of outbreak from one country of others is very challenge



Spatial Distribution of LSD in Asia



Locations (XY-coordinate: latitude and longitude) of lumpy skin disease outbreaks in Asia from January, **2006 to May, 2023**

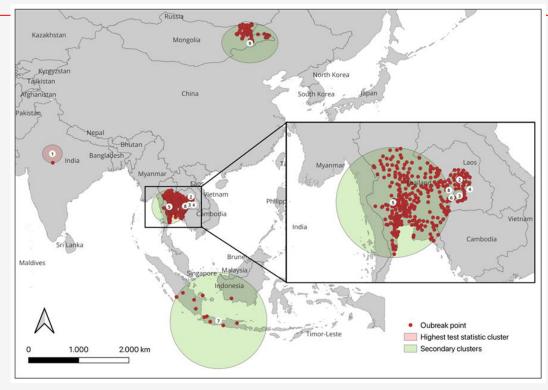

Recent situation in Asia

- LSD outbreaks were reported from various countries
- Thailand had the highest number of LSD outbreak in 2021
- Very high number of outbreak were reported from India during Jul-Dec 2022

Spatial Epidemiology

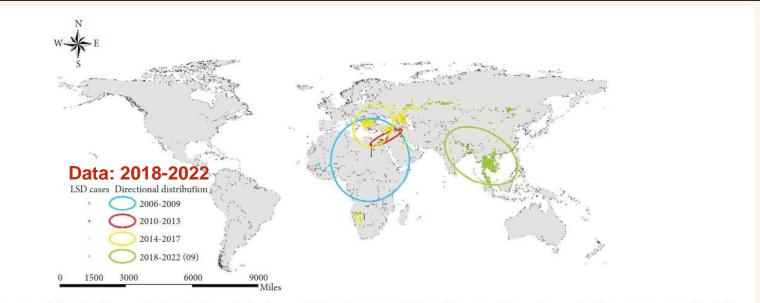
- Spatio-temporal LSD outbreak clusters in Asia (2012-2022)
- In Thailand, LSD outbreak clusters are identified in the areas with the first LSD outbreak (Roi-Et; northeastern), dairy farming area in the north-eastern and north.
- Directional distribution of LSD outbreaks is also identified

Qi An et al, 2023; Arjkumpa et al, 2021; Punyapornwithaya et al, 2022, Modethed et al., 2023

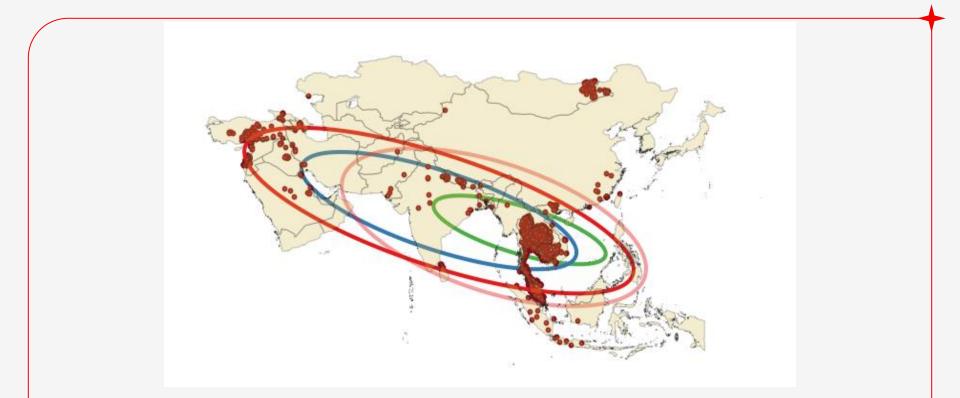


Within the maximum extension of the spatial window, the maximum radius was set to 1000 km, and 50% of the study period was set as the maximum time window.

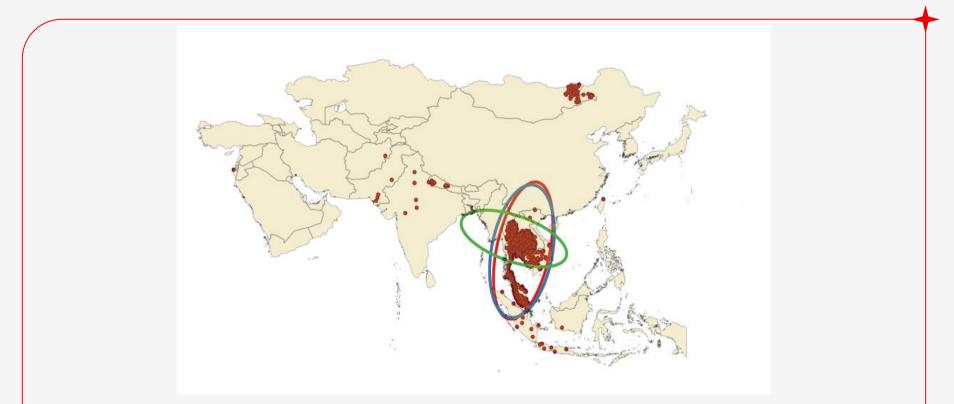
Li et al., 2023

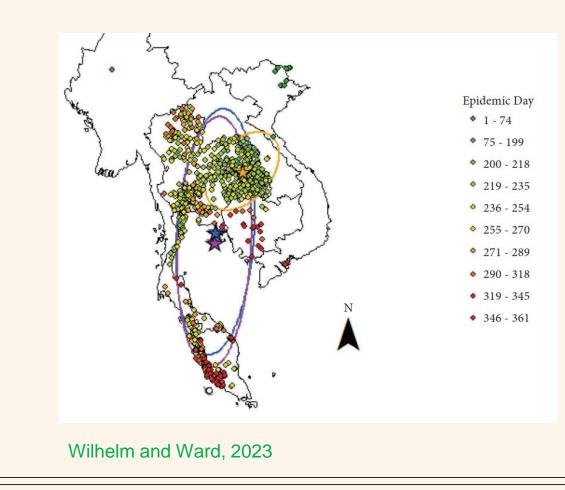

No	Type of analysis	Model	Area	Time	Maximum temporal
-				aggregation	cluster size
1	Space-time	Poisson	Asia	Year	50% of the study period
2	Space-time	Poisson	Asia	Year	1 year
3	Space-time	Poisson	Asia	Month	50% of the study period
4	Space-time	Poisson	Asia	Month	1 month
5	Space-time	STP	Asia	Year	50% of the study period
6	Space-time	STP	Asia	Year	1 year
7	Space-time	STP	Asia	Month	50% of the study period
8	Space-time	STP	Asia	Month	1 month
9	Space time	Poisson	SEA	Year	50% of the study period
10	Space time	Poisson	SEA	Year	1 year
11	Space-time	Poisson	SEA	Month	50% of the study period
12	Space-time	Poisson	SEA	Month	1 month
13	Space-time	STP	SEA	Year	50% of the study period
14	Space-time	STP	SEA	Year	1 year
15	Space-time	STP	SEA	Month	50% of the study period
16	Space-time	STP	SEA	Month	1 month

Model	Description	Area	Number	Model	Description	Number of	Table
			of clusters			clusters	number
1	Space time - Poisson model	ASIA	8	9	Space time - Poisson model	1	3.9
2	Space time - Poisson model	ASIA	8	10	Space time - Poisson model	1	3.10
3	Space time - Poisson model	ASIA	2	11	Space time - Poisson model	2	3.11
4	Space time - Poisson model	ASIA	4	12	Space time - Poisson model	2	3.12
5	Space time - STP model	ASIA	6	13	Space time – STP model	6	3.13
6	Space time - STP model	ASIA	7	14	Space time – STP model	6	3.14
7	Space time - STP model	ASIA	9	15	Space time – STP model	7	3.15
8	Space time - STP model	ASIA	9	16	Space time – STP model	8	3.16



The space-time permutation model


Monthly time aggregation is applied, and the maximum temporal cluster size is set to 1 month. The model identifies one primary cluster and eight secondary clusters.


³IGURE 1: Directional distribution analysis of LSD cases in the world from 2006 to September 2022. The points and ellipses represent the LSD cases and standard deviation ellipses for the different phases. The blue color depicts 2006–2009, the red color depicts 2010–2013, the yellow color depicts 2014–2017, and the green color depicts 2018–September 2022.

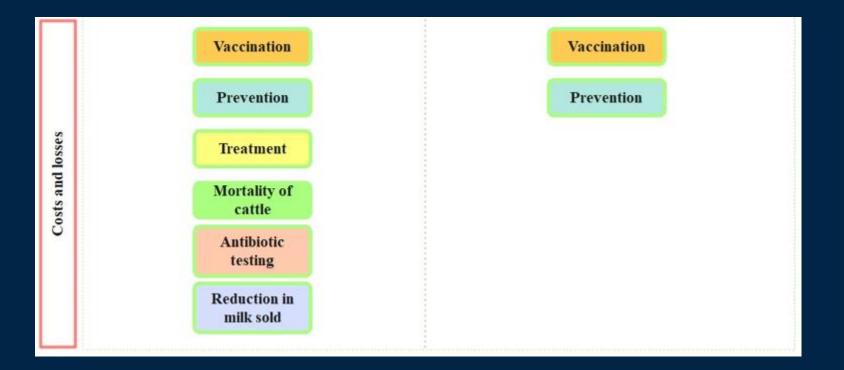
Standard deviation ellipses were obtained from the **Yuill method**, with (green line) and without weighting (blue line) and **CrimeStat** with (pink line) and without weighting (red line) based on lumpy skin disease outbreak data from **2006 to 2023 (May)**.

Standard deviation ellipses were obtained from the Yuill method, with (green line) and without weighting (blue line) and CrimeStat, with (pink line) and without weighting (red line) based on lumpy skin disease outbreak data from **2021 to 2023 (May)**.

Spatial Epidemiology : key message

- Type of models and parameter settings affect on the results (e.g., cluster size, number of cases, time period)
- Type of data : global and local data
- The directional trend provides a better understanding of the LSD spreading. For example, in Thailand, the disease spread is observed to move from northeast to south

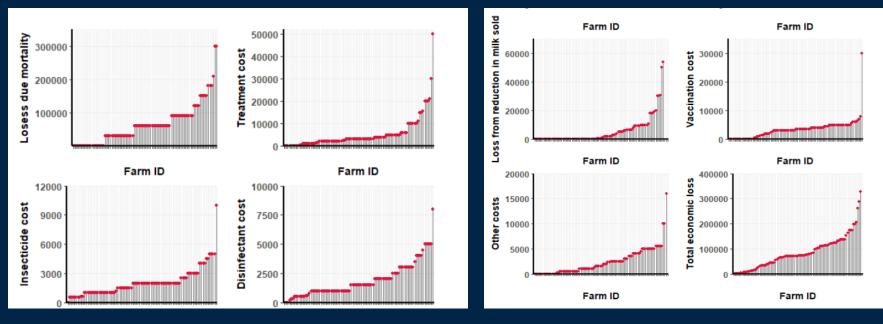
Qi An et al, 2023; Arjkumpa et al, 2021; Punyapornwithaya et al, 2022, Modethed et al., 2023


Impact of LSD

Impacts of LSD

- Estimate : 1.45 US billion (South, East and SEA)
- Ethiopia: 1,176 USD/farm, Kenya: 755 USD/farm
- Thailand: Loss in milk sold (119-412 USD/)

Roche et al, 2020; Molla et al., 2017; Kiplagat et al., 2020; Vinitchaikul et al., 2003;


Farm with LSD outbreak Farm without LSD outbreak

Impacts of LSD: Field study WOAH-CMU project

Economic loss due to lumpy skin disease outbreaks.

	USD *	
deviation (Thai Bath)		
64,000±61,366.46	1,801± 1,727	
5,227 ±7,273.22	147± 204	
2,026 ±1,430.01	57± 40	
1,858±1,435.26	52± 40	
8,084±1,722.71	227± 48	
3,327±34,66.17	93± 97	
2,903 ±5,651.59	81± 150	
87,429 ± 74,903.06	2,461 ±2,108	
	64,000±61,366.46 5,227 ±7,273.22 2,026 ±1,430.01 1,858±1,435.26 8,084±1,722.71 3,327±34,66.17 2,903 ±5,651.59	

- Primary loss: mortality of LSD-affected cattle.
- Vaccination cost was notably higher than insecticides and disinfectants, but lower than treatment cost

Economic loss due to LSD outbrea	aks in Lopburi	province	(Promsathit e	t al., 2022) .

Thai Baht	USD
5,000	14.7
1,515	42.6
NA	-
2,520	70.9
3,835	107.9
5,385	151.5
NA	
14,221	400.23
	5,000 1,515 NA 2,520 3,835 5,385 NA

Transmission of LSD and Risk factors

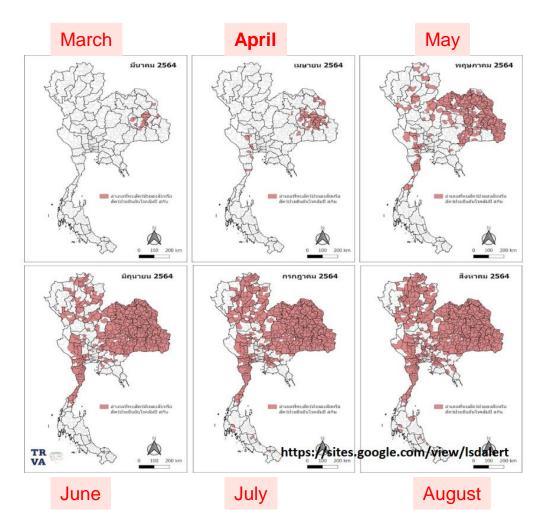
Transmission of LSD

- Long distance : animal movements
- Short distance: insect vector
- <u>Transmission via insect vectors is confirmed</u>
- Kernel transmission indicates short-distance transmission in several outbreak areas
- Insect controls for naïve herd ?

Sprygin et al., 2019; Sohier et al., 2019; Punyapornwithaya et al,. 2023

Risk factors

- Animal movements
- Lack or ineffective insect control (Thailand and Indonesia)
- Climate
- Others



Control measure of LSD

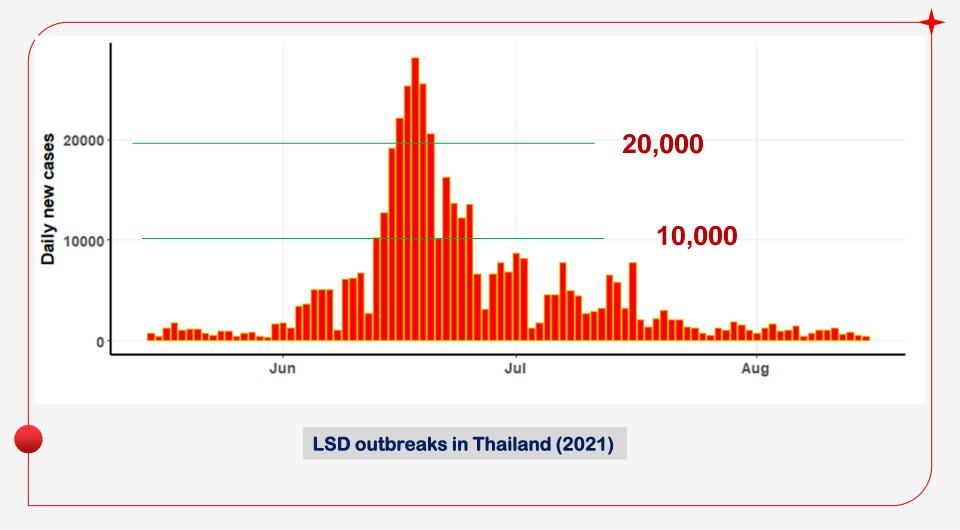
Vaccination

Country	Vaccine	Trade Brand
Vietnam	Homologues Heterologous	LumpyShield-N® / LumpyShield-G® JovivacStrong®
Thailand	Homologues	LUMPYVAX®, MEVAC®
Malaysia	Homologues	Bovivax LSD-N®, LUMPYVAX®, MEVAC®
Cambodia	Homologues	LUMPYVAX®,
Indonesia	Homologues	LUMPYVAX®, MEVAC®
India	Homologues	Lumpi-ProVacInd®

Example: control measures implemented in the country with a nationwide LSD outbreak

Thailand has a massive LSD outbreaks in 2021

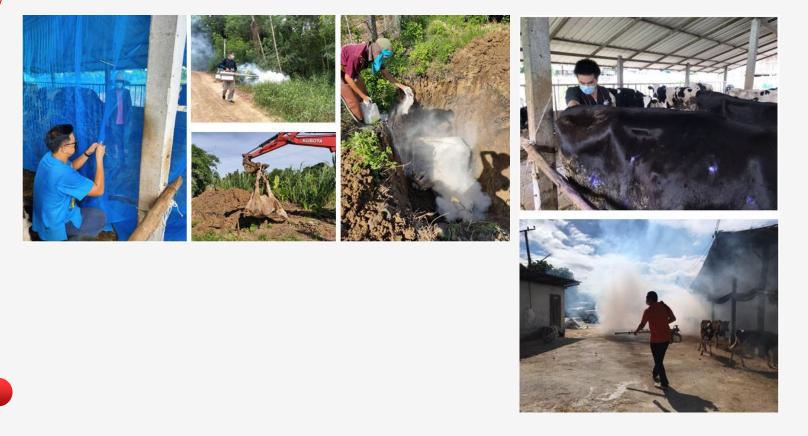
DLD-Website: frequently update the outbreak situation


MDPI

Article

Rapid Spread and Genetic Characterisation of a Recently Emerged Recombinant Lumpy Skin Disease Virus in Thailand

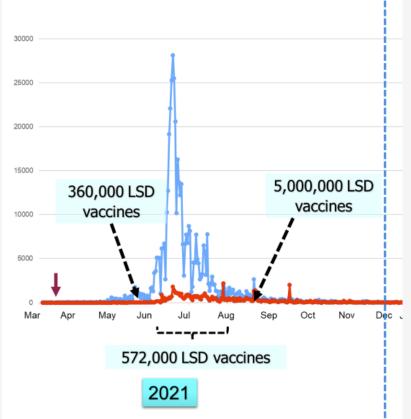
Nutthakarn Suwankitwat ^{1,2}, Tapanut Songkasupa ², Prakit Boonpornprasert ², Phurida Sripipattanakul ², Sirin Theerawatanasirikul ¹, Taweewat Deemagarn ², Minta Suwannaboon ³, Orapun Arjkumpa ³, Noppawan Buamithup ², Akkarapol Hongsawat ², Sirima Jindajang ⁴, Nawakarn Nipaeng ⁵, Dilok Aunpomma ³, Lamul Molee ², Kanokwan Puangjinda ², Walaiporn Lohlamoh ², Bandit Nuansrichay ², Rawint Narawongsanont ¹, Pipat Arunvipas ^{6,*} and Porntippa Lekcharoensuk ^{1,*}


- March to July 2021 : 426 out of 859 samples were confirmed positive by p32 real-time PCR
- Nearly identical to strains found in Vietnam and China

Control measures at national scale

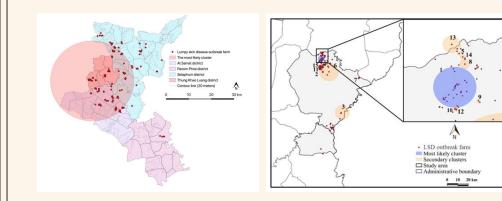
Following the WOAH meeting presentation (WOAH, 2021a, b), the control measures implemented immediately after the first outbreak in 2021 included:

- Controlling vectors.
- Utilizing disinfectants.
- Establishing a containment zone with a 50 km radius around outbreak farms.
- Conducting active surveillance in areas adjacent to the containment zone to monitor new cases.
- Employing active LSD cases finding approaches for active surveillance within the containment zone.
- Implementing quarantine measures for all confirmed and suspected herds.
- Enforcing a ban on animal movement both into and out of the contaminant zones.

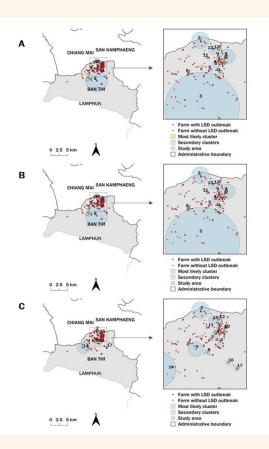

WOAH, Suwankitwat et al.,

https://rr-asia.woah.org/wpcontent/uploads/2022/12/thailand_lsd_update_presentation-1.pdf The follow-up WOAH meeting, which focused on LSD prevention and control (WOAH, 2022), provided the following updates on LSD vaccination:

- Live attenuated vaccines, including LUMPYVAX and MEVAC, with a total of 5,923,000 doses imported, and an additional 6,300,000 doses are expected in 2023.
- Data revealed that 5,923,000 doses were administered.
- Spot-on insecticide was applied in 38,348 farms, while spray insecticide was used in 227,121 farms. Additionally, insecticide was distributed to 134,863 farms.
- Disinfectant was utilized in 174,353 farms.
- Public relations and education initiatives were conducted involving 434,994 farmers.


Results from a Bayesian interrupted model indicate the effects of mass vaccination on the reduction of new LSD cases (under review manuscript)

https://rr-asia.woah.org/wp content/uploads/2022/12/thailand_lsd_update_presentation-1.pdf



Knowledge gap

- Policy: 50 km radii for animal movement control
- No suggestion for insect vector control radius

- Results from 4 publications
- Most of clusters had radius < 1 km
- Suggestion for <u>effective insect vector</u> <u>control</u> in the 1 km radii of outbreak farm for area with high density of farms and abundant of insects

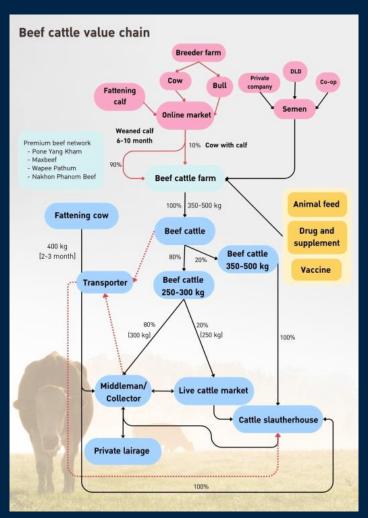
Punyapornwithaya et al, 2022; Modethed et al., 2023.

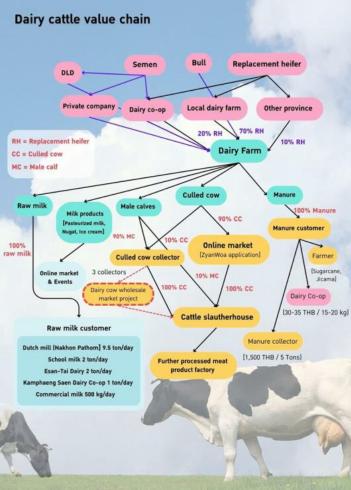
Effective insect vector control

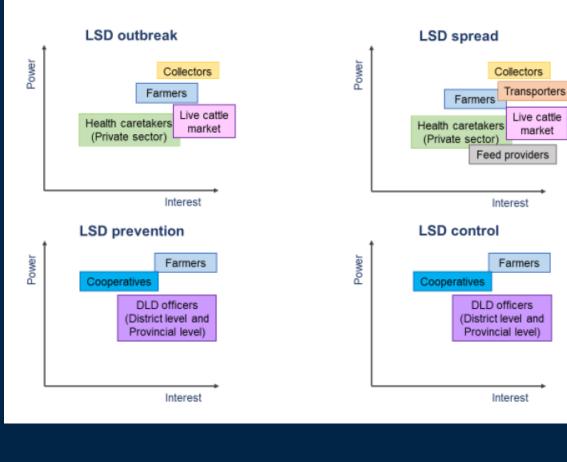
- Using insecticide over a large area may not be effective and could be costly
- Applying insecticide by spraying it on the body surface of animals may be challenging
- The elimination of breeding habitats for insectsmay not provide complete protection.
- The production of smoke through burning grass has a solely repellent impact on insects.

Value chain analysis

WOAH-CMU project




Khokkho dairy cooperative



Understanding the connection of stakeholders in the value chain

Preliminary knowledge is valuable for disease prevention and control

How did the stakeholders engage with each other during the outbreak?

Animal traders play important role for LSD outbreak and spread

Farmers play important role for LSD prevention and control

Cooperation among stakeholders (e.g. dairy cooperative, livestock officers and University faculty) is the key.

Conclusion: key message

- LSD is currently widespread in Asia.
- Establishing guidelines or recommendations for the prevention and control of LSD is crucial.
- Cooperation among countries is necessary
- Enhancing the reporting system for LSD outbreaks.
- Conducting regional and local studies.

Acknowledgement

- Study working group from WOAH
- WOAH
- Australia DAFF : Enhanced capacity of countries in South-East Asia to detect, control and prevent the spread of priority transboundary animal disease

Thank you for your attention