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FDA NEWS RELEASE

FDA Approves First-of-its-Kind
Intentional Genomic Alteration in Line of
Domestic Pigs for Both Human Food,
Potential Therapeutic Uses

Alteration intended to eliminate alpha-gal sugar on surface of pigs’
cells

€he New Jork Eimes

In a First, Man Receives a Heart From
a Genetically Altered Pig

The breakthrough may lead one day to new supplies of animal
organs for transplant into human patients.

Jan. 10, 2022

A 57-year-old man with life-threatening heart disease has received
a heart from a genetically modified pig, a groundbreaking
procedure that offers hope to hundreds of thousands of patients
with failing organs.

It is the first successful transplant of a pig’s heart into a human
being. The eight-hour operation took place in Baltimore on Friday,
and the patient, David Bennett Sr. of Maryland, was doing well on
Monday, according to surgeons at the University of Maryland
Medical Center.

“It creates the pulse, it creates the pressure, it is his heart,” said Dr.
Bartley Griffith, the director of the cardiac transplant program at
the medical center, who performed the operation.

Dr. Bartley Griffith, left, performed the operation on David
e . . N , Bennett Sr. to receive a new heart from a genetically
It’s working and it looks normal. We are thrilled, but we don’t modified pig. University of Maryland School of Medicine

know what tomorrow will bring us. This has never been done
before.”




€he New Nork Times

Genetically Modified Pig’s Heart Is
Transplanted Into a Second Patient

The first patient to receive such an organ died after two months.
“At least now | have hope,” the second recipient said before the

surgery.

Sept. 22,2023

Surgeons in Baltimore have transplanted the heart of a genetically
altered pig into a man with terminal heart disease who had no

other hope for treatment, the University of Maryland Medical 4
Center announced on Friday. Surgeons examine a pig heart during Lawrence Faucette’s transplant surgery. Mark

Teske/University of Maryland School of Medicine, via Associated Press

It is the second such procedure performed by the surgeons. The
first patient, David Bennett, 57, died two months after his
transplant, but the pig heart functioned well and there were no
signs of acute organ rejection, a major risk in such procedures.

The second patient, Lawrence Faucette, 58, a Navy veteran and
married father of two in Frederick, Md., underwent the transplant
surgery on Wednesday and is “recovering well and communicating
with his loved ones,” the medical center said in a statement.

Mr. Faucette, who had terminal heart disease and other

COmpliCated medical COnditiOnS, was so Sick that he had been Mr. Faucette, a 20-year Navy veteran with heart failure from Frederick, Md., and his
wife, Ann Faucette, before the surgery. Mr. Faucette, 58, received a genetically altered

rejected from all tral’lsplant programs that use hu_[nan donor pig heart at the University of Maryland Medical Center. University of Maryland Medical
Center

organs.

Table S1: Genetic Modifications of Source Animal for Cardiac Xenotransplantation

Genetic Modification Mechanisms Properties

Xenogeneic Carbohydrate Knockout

Deletion of immunogenic Galactose-a-1,3-galactose
Galacto;g?g_i_::(-gilactose (Gal) glycan through knockout of the synthetic
enzyme alpha1,3-galactosyltransferase (GT)

31,4-N- Deletion of immunogenic blood group SDa antigen
acetylgalactosyltransferase through knockout of the synthetic enzyme Anti-
KO (B4GalKO) (B4GaINT2) Immunogenic

Deletion of immunogenic glycan N-

CHIF-H-acetylnsuraminic glycolylneuraminic acid (Neu5Gc) through knockout

acid hydroxylase KO

of the synthetic enzyme CMP-N-acetylneuraminic
(GMAHRQ) acid hydroxylase (CMAH)
Growth Hormone Receptor Reduction of downstream insulin growth factor-1 Reduce intrinsic
Knockout (GHRKO) (IGF-1) signaling graft growth
Human Transgene Expression
CD46 Suppress human complement activity by mediating
cleavage of C3b and C4b complement deposition Complement
Decay Accelerating Factor Inhibits C3 and C5 convertase enzymes and Regulation
(DAF) downstream complement activation
Endothelial Cell Protein C

Receptor (EPCR) Activates Protein C

- ; : : - Anti-Coagulation
Binds human thrombin, and activates Protein C via

Thrembemedulin:(TEM) activated thrombin

Hemeoxygenase-1 (HO-1) Decreases oxidative products Anti-
Interacts with macrophage signal regulatory protein Inflammatory
CD47 (SIRP)a to prevent opsonization and phagocytosis of

xenogeneic tissue

GGTA1 gene N Engl J Med 387:35-44 (2022)




Galactose-a-1,3-galactose (a-Gal) is

present in organs and muscles from most mammals (but
not humans, apes, and old world monkeys) as a glycan
conjugated to both proteins and lipids.

biosynthesized by a1,3-galactosyliransferase encoded in
GGTA1 gene, which has inactive mutation in humans, apes,
and old world monkeys.

recognized as target epitopes of immunoglobulin (Ig)E, that
commonly contributed to clinical symptoms in a-Gal syndrome.

Gal Gal GIcNAc
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First GM pigs for allergies. Could xenotransplants
be next?

The FDA greenlights a-Gal allergy-safe meat, but its makers have organs for transplants in their sights.

Nat Biotechnol 39: 393-400 (2021)

could now provide a source of
meat for people who develop tick
bite-induced allergic reactions to
the sugar, a condition known as
a-Gal syndrome, including

red meat allergy.

Gene-edited pigs could solve the human organ transplant shortage. Credit: Pulsar Imagens / Alamy
Stock Photo




Somatic cell nuclear transfer (SCNT) in pig

Afr J Biotechnol 10(76): 17384-90 (2011)
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In vitro gene-modification in cultured donor cells Cloned pigs

1st generation of GGTA1 gene deficient pigs

Production of Targeted disruption of the o1,3-

a-1,3-Galactosyltransferase galactosyltransferase gene in cloned pigs
KnOCkOUt Pigs by NUCIear Yifan Dai'*, Todd D. Vaught!, J B 1, Shu-H Chen', Carol J. Phelps!, S Ball'
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Table 1. Pregnancies carried to term after transfer of embryos reconstructed with GGTA1 knockout cell
lines.

NN

Surrogate i NT
(estrus day) Donor line embryos Outcome
o212 (0) F7-H6 116 Mated surrogate
Seven born 9/21/01
One NT-derived female piglet
0226 (1) F3-C5 92 Four NT-derived female piglets born 10/19/01
0230 (1) F7-H6 cultured 130 Two NT-derived female piglets born 10/15/01

Figure 3. Five u1,3GT gene knockout piglets at 2 weeks of age.

Science 295:1089-92 (2002) Nat Biotechnol 20:251-55 (2002)




For Food Safety,

1, transgene insertion, including drug selection marker gene,
vector sequence, etc.

2, unexpected (off-target) mutation

in genetically modified animals are not appropriate.

Transgenic pig carrying

green fluorescent protein (GFP)
derived from jellyfish

PNAS 110(16):6334-39 (2013)

How generate target gene-modified animals
“without” exogenous gene integration?

Genetic scissors: a tool for rewriting the code of life

The Nobel Prize in Chemistry 2020

Emmanuelle Charpentier
Jennifer A. Doudna

Share this
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Elmehed. Elmehed.

Emmanuelle Jennifer A. Doudna
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“for the development of a method for genome editing”




Genome editing platforms and mechanisms for DSB repair

with endogenous DNA.
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Signal Transduction and Targeted Therapy 5:1 (2020)

Major methods for generating genetically modified pigs
using gene editors

Genomic DNA

Cytoplasmic microinjection (CMI)
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Introduction of gene editors via
electroporation

J Reprod Dev 67: 177-187 (2021)




Tanihara et al. BMC Biotechnology (2020) 20:40
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RESEARCH ARTICLE Open Access

Efficient generation of GGTAT-deficient pigs @
by electroporation of the CRISPR/Cas9
system into in vitro-fertilized zygotes

Fuminori Tanihara', Maki Hirata'"@®, Nhien Thi Nguyen', Osamu Sawamoto? Takeshi Kikuchi?, Masako Doi” and

Takeshi .1 . . .
akeshige Otoi Tokushima University,

A Japan
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Generation of cattle knockout for galactose-a1,3-galactose
and N-glycolylneuraminic acid antigens
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PNAS 118 (10): €2022562118 (2021)

Cas9-expressing chickens and pigs as resources for
genome editing in livestock

Beate Rieblinger®', Hicham Sid>'®, Denise Duda®"’, Tarik Bozoglu , Romina Klinger®, Antonina Schlickenrieder®,
Kamila Lengyel®, Krzysztof Flisikowski?, Tatiana Flisikowska®, Nina Simm?, Alessandro Grodziecki®®,
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Technical University Munich
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In vivo genome editing in SpCas9 transgenic pigs and chickens can be
easily performed by transducing with an AAV virus encoding gRNAs

PNAS BRIEF REPORT | AGRICULTURAL SCIENCES a OPEN ACCESS

Generation of genome-edited chicken and duck lines by

adenovirus-mediated in vivo genome editing
Joonbum Lee? Dong-Hwan Kim?, Madeline C. Karolak? Sangsu Shin®®@, and Kichoon Lee®’ The OhIO State UniVerSity
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PNAS 119 (45):€2214344119 (2022)
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Ex vivo primordial germ cell (PGC)-mediated method
for genome editing in the chicken

Int J Mol Sci 21: 3937 (2020)

1, Chicken PGCs are isolated from embryonic blood or gonad

2, Ex vivo genome editing in cultured PGCs

3, Selection of genome-edited PGCs

4, Injection into the dorsal aorta of recipient chicken embryos

5, Generation of potential germ-line chimeric chicken

6, Chimeras are mated with wild-type partners to produce heterozygous
mutant (+/-) chickens
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Confirming the safety of genetically edited allergen-free
eggs

Researchers have created a genetically edited allergen-free chicken egg
that may be safe for those with egg white allergies.

Scientists from Hiroshima University produced OVM knocked out chickens using genome editing
tools. Colored chickens are knockout chickens. (Ezaki et al. 2023, Food and Chemical Toxicology)




Ovomucoid (OVM) accounts for approximately 11% of all the
protein in egg whites, and OVM is one of allergens for egg allergy.
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Food and Chemical Toxicology 175:113703 (2023)

Summary

Current genetic engineering techniques enable to produce
genetically modified livestock including pigs, cattle and chickens.

GGTAT1 deficient pigs, which lack galactose-a-1,3-galactose
(a-Gal) sugar molecule, for potentially allergy-free meat were
established.

FDA approved GGTA1 deficient pigs (facility in northern lowa) for
human food in 2021, but not yet commercially available.

Exogenous gene integration-free GGTAT deficient cattle,
OVM deficient chickens were also generated.

These genetically modified animals are thought as new livestock
for potentially allergy-free food, but it is still in the research stage.




