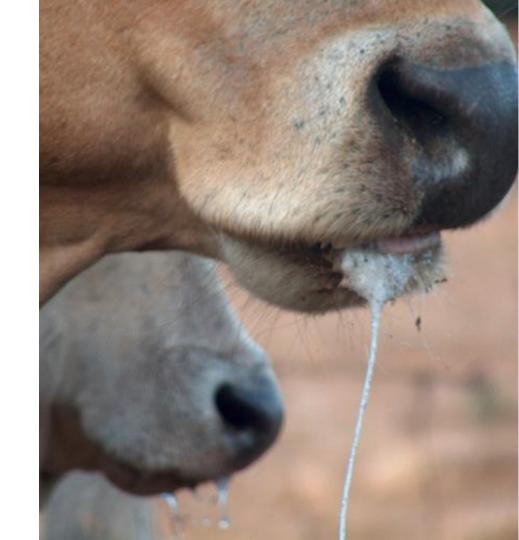
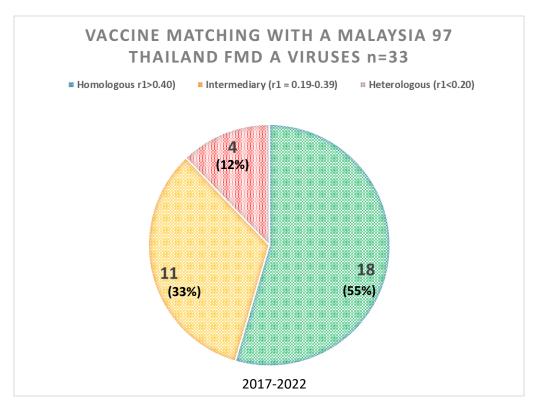


Activities at the Australian Centre for Disease Preparedness to assist with FMD preparedness and response


Wilna Vosloo | 23 August 2023

FMD preparedness

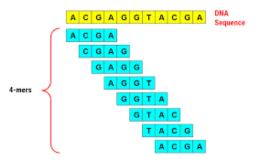
- Tools to assist with
 - Surveillance
 - Diagnostics
 - Control



Laboratory predictions of vaccine efficacy

- *In vitro* screening allows investigations into a large number of isolates
- Vaccine matching using VNT and ELISA (AVB vaccine strains)
- Up to 2018
 - Serotype O: no clear trend in antigenic drift
 - Serotype A: new viral clusters constantly evolving

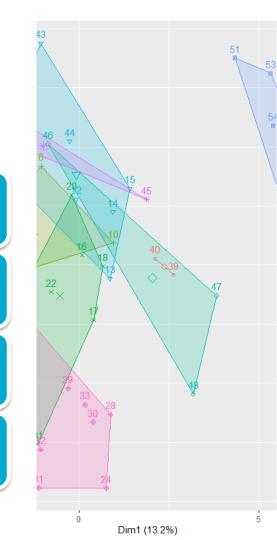
	Serotype O		Serotype A	
Vaccine strain	O1 Manisa	O3039	A22/IRQ	A/MAY/97
No of isolates	166	169	60	130
Homologous	32%	72%	28%	75%
Intermediate	13%	12%	25%	8%
Heterologous	21%	1%	42%	15%
Poor binding*	34%	15%	5%	2%



Acknowledgement: Pakchong laboratory in Thailand

Novel way of phylogenetic analysis

- Most phylogenetic comparisons require sequence alignment
 - Prior knowledge on sequence indels
 - Can be computationally demanding
- K-mer analysis requires no sequence alignment therefore no prior knowledge

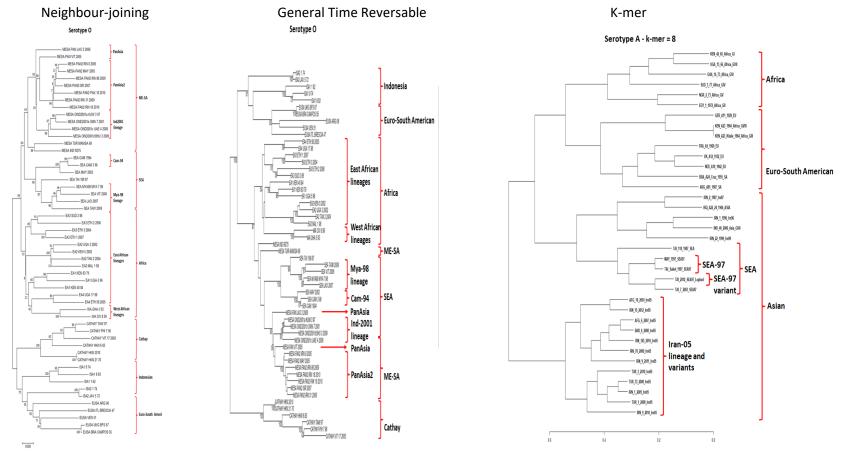

Approach

Downloaded a large number of sequences + internally generated

Focused on serotype O and A

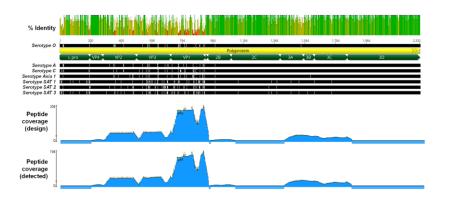
Determined the optimal k-mer frequency

Compared tree topologies generated by Neighbour-Joining, General Time Reversible (GTR) model, and k-mer



Results

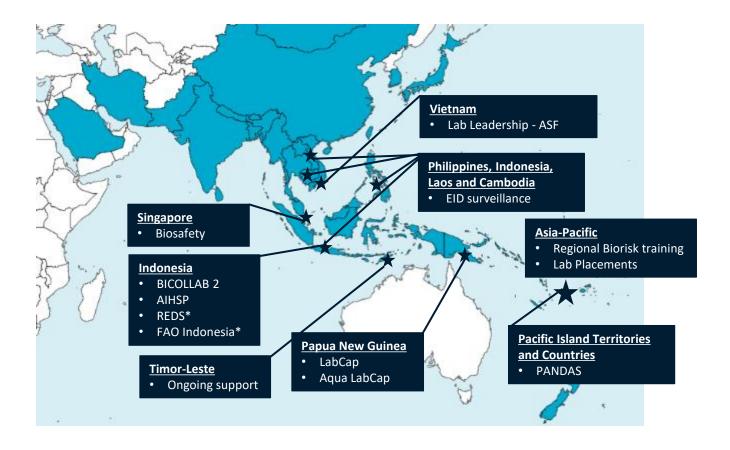
- Genetic groupings were similar between all 3 methods for both serotypes
- However, k-mer analysis was computationally intense and needed high-performance computing systems when large numbers of isolates were compared
- Could improve scrips to circumvent this
- Reference sequencies were very useful where alignment is required


Dendrogram comparisons for serotype O

Multiplexed profiling of serological responses

- Phage Immunoprecipitation Sequencing (PhIP-Seq)
 - Based on peptide phage display
 - Attractive for high-throughput serological profiling and epitope discovery
 - Sero-epidemiology, risk factor analysis and association, vaccinology and pandemic preparedness efforts
- We investigated if we can distinguish between 5 serotypes and vaccinated animals
 - Pool of 1663 peptides

- Promise for epitope mapping
- Differences between vaccinated and unvaccinated animals
- More value in highly multiplexed assay design



Support for the region through the International Program at ACDP

ACDP-IP Regional footprint 2024

Achievements: Regional Emerging Disease Support REDS

- DAFF funded project to strengthen technical capability in FMD and LSD
- Assisting lead Indonesian laboratories to develop external quality assurance(EQA) programs for the Indonesian veterinary laboratory network
 - PUSVETMA for FMD
 - DIC Wates for LSD
- EQA consisting of network quality controls and proficiency testing programs for serology and PCR

Achievements: BICOLLAB

- CSIRO ACDP supports the delivery of a targeted laboratory capacity building project in Indonesia: BICOLLAB
- This project is funded by DFAT's Global Health Division (GHD).
- Sub-project to Evaluate the performance characteristics of LFDs for FMD detection in field conditions was proposed.
- Sub-project objectives
 - 1. Identify LFDs suitable for antigen detection in FMD outbreaks
 - 2. Evaluate the LFDs for their performance characteristics
 - 3. Standardize methods to recover the FMDV genome from LFDs

Achievements: LabCap PNG

- Laboratory capacity building project in Papua New Guinea
- Funded by the Australian High Commission in Port Moresby
- Strengthening laboratory and field diagnostic capability for priority diseases, including FMD.
- For detection of FMD we have implemented:
 - Real time PCR testing
 - Lateral flow devices
 - ELISA testing (set-up in progress)

Workshop, Lae, Papua New Guinea, 5-8 June 2023

Thank you

Health & Biosecurity

Wilna Vosloo Group Leader

+61 3 5227 5015 Wilna.Vosloo@csiro.au

https://research.csiro.au/fmd

Acknowledgment International Program – AAHL Immunomics team – H&B (ACDP)

Australia's National Science Agency

