
The importance of EI in the Asia and Pacific Region

example: Tokyo2020 Olympics/Paralympics

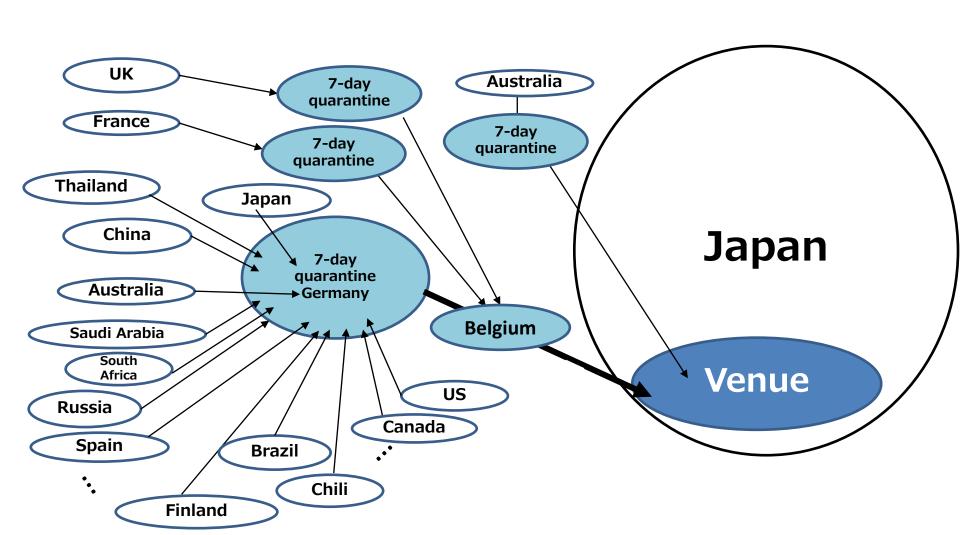
Takashi Yamanaka

the Japan Racing Association

Comparison of morbidities between the two outbreaks in Japan

Disease onset (≥38.5°C)	1971-1972	2007	
	Unvaccinated	Vaccinated	
Yes	1799	530	
No	56	3612	
Total	1855	4142	
Morbidity ratio	≒ 97%	≒ 13%	

Thanks to vaccination, the risk of clinical onset was greatly reduced.


Comparison of morbidities between the two outbreaks in Japan

Disease onset (≥38.5°C)	1971-1972	2007		
	Unvaccinated	Vaccinated		
Yes	1799	530		
No	56	3612		
Total	1855	4142		
Morbidity ratio	≒ 97%	≒ 13%		

Thanks to vaccination, the risk of clinical onset was greatly reduced.

We should bear in mind that 13% of total vaccinated horses developed fever and 19% of healthy horses shed virus from nostrils!!

Horse movements to Japan for Tokyo2020

Vaccination prior to shipment

Testing at pre-departure/postarrival quarantine

Minimizing risk of EI intrusion to venues

Sanitation inside venue

Minimizing risk of EI spread inside venues

- Zoning
- Vaccination to local population

Minimizing risk of EI to local populations

Vaccination

- Requirements prior to shipment
- Requirements for local population

Testing

• Pre-departure

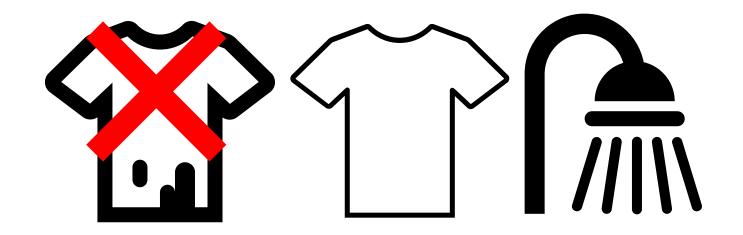
Post arrival

Zoning and sanitary management

Survival of influenza viruses on environmental surfaces

Surface	Condition	Length of virus viability
Fabric/clothing	RH: 35-40% Temp: 28°C	8-12 h
Stainless steel or plastic	RH: 35-40% Temp: 28°C	24-48 h
Tap water (pH7.0)	<37°C	2 days
Soil	In dark storage 18°C	24 h
Soil	In direct sunlight 15°C	8 h

Bean et al. 1982, J. Infect. Dis.



Water trough

Contents lists available at ScienceDirect

Veterinary Microbiology

journal homepage: www.elsevier.com/locate/vetmic

Short communication

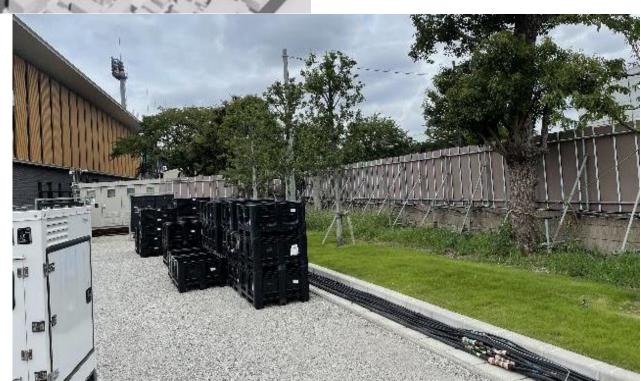
Interspecies transmission of equine influenza virus (H3N8) to dogs by close contact with experimentally infected horses

Takashi Yamanaka*, Manabu Nemoto, Koji Tsujimura, Takashi Kondo, Tomio Matsumura

Epizootic Research Center, Equine Research Institute, Japan Racing Association, 1400-4 Shiba, Shimotsuke, Tochigi 329-0412, Japan


Table 2 Virus detection by egg culture and titers ($log_{10} EID_{50}/200 \mu l$) of nasal swab specimens collected from horses and dogs.

Animal	Days after inoculation (horses) ^b										
	0	1	2	3	4	5	6	7	8	9	10
Horse 1	_a	-	3.7	4.5	3.4	3.5	2.5	-	-	-	_
Dog 1	-	_	-	-	-	-	-	-	-	-	_
Horse 2	-	-	4.3	3.7	2.7	≤1.4	3.0	1.5	-	-	_
Dog 2	_	-	_	_	-	-	-	_	≤0.7	≤0.7	_
Horse 3	-	-	3.5	1.5	≤1.4	2.7	2.4	-	-	-	_
Dog 3	-	-	-	-	-	-	≤0.7	-	≤0.7	-	-


a <0.7 (no EIV was isolated from four eggs inoculated with the nasal swab specimen diluted of 1:10).

^b No results after Day 11 are shown since they were all <0.7.

Stray dogs

Vaccination prior to shipment

Testing at pre-departure/postarrival quarantine

Minimizing risk of EI intrusion to venues

Sanitation inside venue

Minimizing risk of EI spread inside venues

- Zoning
- Vaccination to local population

Minimizing risk of EI to local populations