

Modeling Japanese encephalitis: Characterization of JEV transmission dynamics & estimation of human exposure in Cambodia

WOAH Webinar on Vector-borne Zoonoses affecting equines - Japanese Encephalitis (JE) and West Nile fever (WNF)

Wednesday 29th March 2023

Héléna Ladreyt

Context & epidemiology

- Vectorborne zoonosis, flavivirus
- Main cause of viral encephalitis in Asia
- $\frac{3}{4}$ clinical cases: children \rightarrow severe forms
- Angola 2016 Australia 2022

The NEW ENGLAND JOURNAL of MEDICINE

Autochthonous Japanese Encephalitis with Yellow Fever Coinfection in Africa

> 100 500 clinical cases/year

> 25 000 deaths/year

JE distribution in 2018 (Source: WHO, 2018)

Context & epidemiology

truth

- Vectorborne zoonosis, flavivirus
- Main cause of viral encephalitis in Asia
- $\frac{3}{4}$ clinical cases: children \rightarrow severe forms
- Angola 2016 Australia 2022

Disease Outbreak News

28 April 2022 | Japanese encephalitis - Australia

Distribution of confirmed (n=25) and probable (n=12) human cases and deaths (n=3) of Japanese encephalitis (JE) and states in which JE virus has been detected in pigs, Australia, 2022. Source: WHO

> 100 500 clinical cases/year

Quan et al 2020, Campbell et al 2011, Impoinvil et al 2013, Le Flohic et al 2013, WHO 2018, Simon-Loriere et al 2017, Maeki et al 2017, Maeki et al 2011, Impoinvil et al 2013, Le Flohic et al 2013, WHO 2018, Simon-Loriere et al 2017, Maeki et al 2017, Maeki et al 2011, Impoinvil et al 2013, Le Flohic et al 2013, WHO 2018, Simon-Loriere et al 2017, Maeki et al 2011, Impoinvil et al 2013, Le Flohic et al 2013, WHO 2018, Simon-Loriere et al 2017, Maeki et al 2011, Impoinvil et al 2013, Le Flohic et al 2013, WHO 2018, Simon-Loriere et al 2017, Maeki et al 2011, Impoinvil et al 2013, Le Flohic et al 2013, WHO 2018, Simon-Loriere et al 2017, Maeki et al 2011, Impoinvil et al 2013, Le Flohic et al 2013, WHO 2018, Simon-Loriere et al 2017, Maeki et al 2011, Impoinvil et al 2013, Le Flohic et al 2013, WHO 2018, Simon-Loriere et al 2017, Maeki et al 2011, Impoinvil et al 2013, Le Flohic et al 2013, WHO 2018, Simon-Loriere et al 2017, Maeki et al 2011, Impoinvil et al 2013, Le Flohic et al 2013, WHO 2018, Simon-Loriere et al 2017, Maeki et al 2013, WHO 2018, Simon-Loriere et al 2017, Maeki et al 2011, Impoinvil et al 2013, Le Flohic et al 2013, WHO 2018, Simon-Loriere et al 2017, Maeki et al 2014, Impoinvil et al 2013, WHO 2018, Simon-Loriere et al 2017, Maeki et al 2014, Impoinvil et al 2013, WHO 2018, Simon-Loriere et al 2017, Maeki et al 2014, Impoinvil et al 2013, WHO 2018, Simon-Loriere et al 2017, Maeki et al 2014, Impoinvil et al 20

RESEARCH

Open Access

Serological evidence of continued Japanese encephalitis virus transmission in Singapore nearly three decades after end of pig farming

Grace Yap^{1,2}, Xiao Fang Lim¹, Sharon Chan³, Choon Beng How³, Mahathir Humaidi^{1*}, Gladys Yeo¹, Diyar Mailepessov¹, Marcella Kong¹, Yee Ling Lai¹, Chiharu Okumura⁴ and Lee Ching Ng¹

Review

How Central Is the Domestic Pig in the Epidemiological Cycle of Japanese Encephalitis Virus? A Review of Scientific Evidence and Implications for Disease Control

Héléna Ladreyt ^{1,2}, Benoit Durand ¹, Philippe Dussart ³ and Véronique Chevalier ^{2,4,5,*}

Introduction

JE in Cambodia

• Endemic

JE in Cambodia

• Endemic

-Intense circulation in pigs

But low density of wild birds and pigs & high density of poultry

→ characterize JEV epidemiological cycle

JE in Cambodia

• Endemic

Intense circulation in pigs

But low density of wild birds and pigs & high density of poultry

Human cases (JEV: > 45% of childhood encephalitis treated in hospial)

But under-reporting/under-detection

→ characterize JEV epidemiological cycle

→ provide an estimate of human exposure

Epidemiological system

→ characterize JEV epidemiological cycle

 \rightarrow provide an estimate of human exposure

village

Epidemiological system

 \rightarrow characterize JEV epidemiological cycle

 \rightarrow provide an estimate of human exposure

Vectors

HEALTH STATES of hosts and vectors

M: protected my maternal immunity
S: sensitive, healthy
E: infected but non infectious (latent)
I: infected & infectious
R: immune

$\mu_h(SEIM)_h$ μ_h μ_h μ_h μ_h μ_h δ_h ϕ_h $\mu_h R_h$ γ_h S_h E_h I_h R_h M_h Hosts foi_h foi,

 $\mathbf{I}_{\mathcal{V}}$

 μ_{v}

 φ_v

 E_{v}

 $\mu_v N_v$

 S_{v}

Model structure & parameters

→ characterize JEV epidemiological cycle

\rightarrow provide an estimate of human exposure

Model calibration: serological & demographic data

Observed seroprevalences/species

Average host population sizes in a village (all species)

Possible because JE endemic in Cambodia

Ladreyt et al, 2022

Model calibration: serological & demographic data

Model outputs

Observed seroprevalences/species

Average host population sizes in a village (all species)

 $\mu_h(SEIM)_h$ μ_h μ_h μ_h δ_h $\mu_h R_h$ γ_h ϕ_h M_h E_h R_h S_h I_h Hosts foi, foi_h Vectors $\mu_v N_v$ S_v E_{v}

Model outputs:

R₀

→ characterize JEV epidemiological cycle

(Can JEV invade the population?)

Probability of exposure, incidence rate

Probability of exposure, provide an estimate of human exposure

Ladreyt et al, 2022

Model outputs

Observed seroprevalences/species

Average host population sizes in a village (all species)

Model outputs:

R₀

→ characterize JEV epidemiological cycle

(Can JEV invade the population?)

Probability of exposure, incidence rate

Probability of exposure, provide an estimate of human exposure

 μ_h

 M_h

 $\mu_h R_h$

Hosts

Vectors

Model outputs

Probability of
exposure,~50 people
infected/year/villageincidence rate

DISCUSSION

Model outputs

Probability of ~50 people exposure, infected/year/village incidence rate

Results

Model applications

- Model to characterize JEV circulation in Cambodian villages & estimate human exposure
- Model calibration with serological data

Results

Model applications

- Model to characterize JEV circulation in Cambodian villages & estimate human exposure
- Model calibration with serological data
- Could be used in other regions

Local model parameters Local serological & demographic data

Result

Model applications

- Model to characterize JEV circulation in Cambodian villages & estimate human exposure
- Model calibration with serological data
- Could be used in other regions

Local model parameters Local serological & demographic data

• Possible to change the composition of the system \rightarrow impact on model outputs

Results

Model applications

- Model to characterize JEV circulation in Cambodian villages & estimate human exposure
- Model calibration with serological data
- Could be used in other regions

Local model parameters Local serological & demographic data

Possible to change the composition of the system → impact on model outputs
 → In Cambodia, JEV could circulate in a system with no pigs

Result

Model applications

- Model to characterize JEV circulation in Cambodian villages & estimate human exposure
- Model calibration with serological data
- Could be used in other regions

Local model parameters Local serological & demographic data

- Possible to change the composition of the system \rightarrow impact on model outputs
 - ightarrow In Cambodia, JEV could circulate in a system with no pigs
 - \rightarrow Dilution effect?
 - \rightarrow Estimate risk of exposure (animal health)

Introduction

Materials and method

Result

Discussio

Model applications

- Model to characterize JEV circulation in Cambodian villages & estimate human exposure
- Model calibration with serological data
- Could be used in other regions

Local model parameters Local serological & demographic data

• Possible to change the composition of the system \rightarrow impact on model outputs

ightarrow In Cambodia, JEV could circulate in a system with no pigs

 \rightarrow Dilution effect?

 \rightarrow Estimate risk of exposure (animal health)

• Identify sentinel species

Results

Model applications

- Model to characterize JEV circulation in Cambodian villages & estimate human exposure
- Model calibration with serological data
- Could be used in other regions

Local model parameters Local serological & demographic data

 \rightarrow Need to set up surveillance?

• Possible to change the composition of the system \rightarrow impact on model outputs

ightarrow In Cambodia, JEV could circulate in a system with no pigs

 \rightarrow Dilution effect?

 \rightarrow Estimate risk of exposure (animal health)

- Identify sentinel species
- Run the model in disease-free context \rightarrow Local circulation if JEV introduced?

Assumptions, local data/parameters

Reunion Island, Indian Ocean

Thank you for your attention សូមិអាវិគា្ណ

PLOS NEGLECTED TROPICAL DISEASES

Ladreyt H, Chevalier V, Durand B (2022) Modelling Japanese encephalitis virus transmission dynamics and human exposure in a Cambodian rural multi-host system. PLoS Negl Trop Dis 16(7): e0010572. https://doi.org/10.1371/journal.pntd.0010572

