
# Insights from post-vaccination monitoring for FMD vaccination strategies in Lao PDR

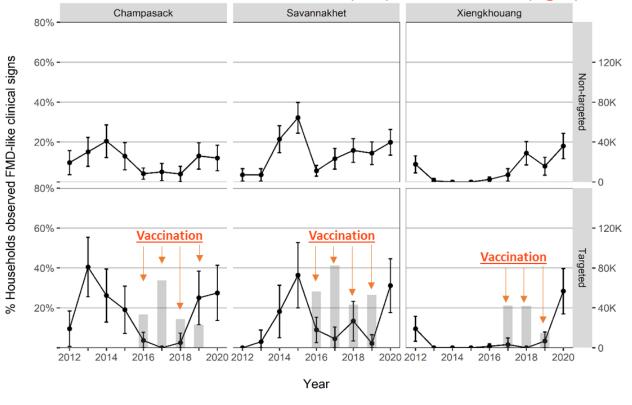


Masako Wada<sup>1</sup>, **Supatsak Subharat<sup>1</sup>**, Jun Hee Han<sup>1</sup>, Ashish Sutar<sup>2</sup>, Ronello Abila<sup>2</sup>, Syseng Khounsy<sup>3</sup>, Cord Heuer<sup>1</sup>

1 EpiCentre, School of Veterinary Sciences, Massey University, Palmerston North, New Zealand

2 WOAH Sub-Regional Representation for South East Asia, Bangkok, Thailand 3 Department of Livestock and Fishery, Ministry of Agriculture and Forestry, Vientiane, Lao PDR








#### Background

- Biannual FMD vaccination in target villages in Lao PDR (2016-20)
- Incidence of clinical FMD was reported in the area despite the vaccination campaign (2016-20)
- Post-vaccination monitoring were conducted to
  - Evaluate the vaccination strategy
  - Identify possible factors that contributed to the observed high FMD incidence

#### %HHs where FMD was observed (left) vs. vaccine use (right)

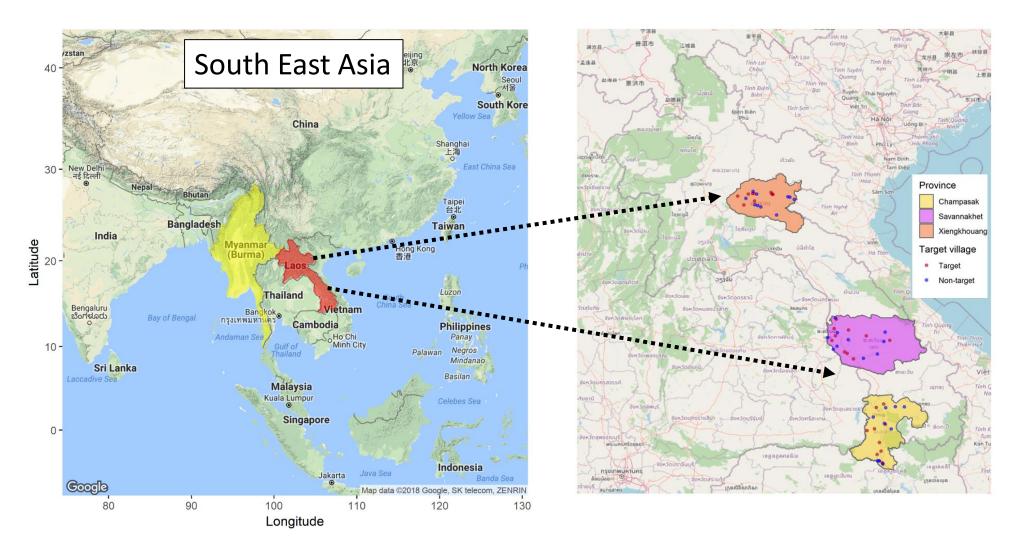


ORIGINAL ARTICLE



Impact of risk-based partial vaccination on clinical incidence and seroprevalence of foot and mouth disease in Lao PDR

Jun-Hee Han<sup>1</sup> | Supatsak Subharat<sup>1</sup> | Masako Wada<sup>1</sup> | Daan Vink<sup>2</sup> |


Bernard J. Phiri<sup>3</sup> | Ashish Sutar<sup>4</sup> | Ronello Abila<sup>4</sup> | Syseng Khounsy<sup>5</sup> | Cord Heue

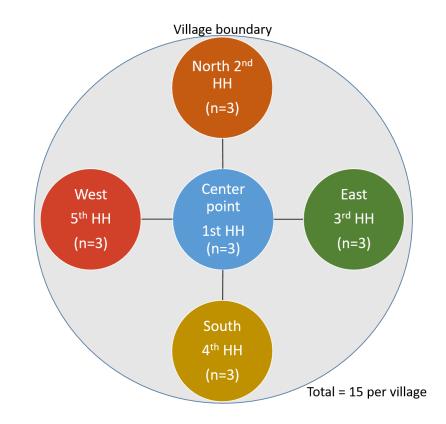




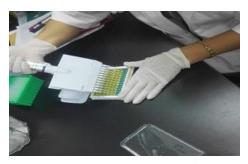


#### Project study area








#### Methods

- Feb 2020 (4–6 months after the 9<sup>th</sup> vaccination round)
- Multi-stage sampling
  - 450 serum samples from 150 households in 30 targeted villages
  - 450 serum samples from 150 households in 30 non-targeted villages
- Testing by PrioCHECK™ kit
  - FMD virus (FMDV) structural protein (SP) type O, A and Asia 1 antibodies
    - Indicator for <u>protective immunity</u>
  - 2. Non-structural protein (NSP)
    - Indicator for historical infection













#### Vaccination coverage

- Lower than the aimed vaccination coverage of 90%
- Drop-out from the campaign in the previous 6 mo (R9) vs 15mo (R7-8)

|                                            | Target village |       |     | Non-target village |       |     |  |
|--------------------------------------------|----------------|-------|-----|--------------------|-------|-----|--|
|                                            | Yes            | Total | %   | Yes                | Total | %   |  |
| # Animals vaccinated in the previous 6 mo  | 248            | 450   | 55% | 72                 | 450   | 16% |  |
| # Animals vaccinated in the previous 15 mo | 319            | 450   | 71% | 121                | 450   | 27% |  |

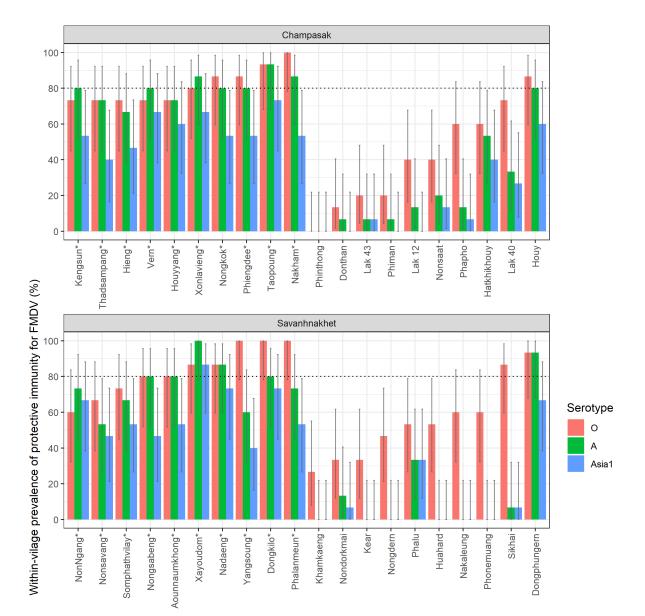




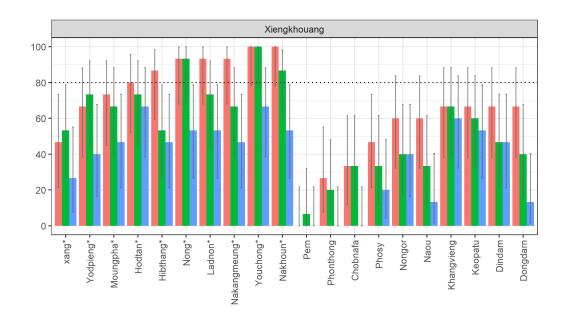


#### Protective immunity

- Higher in target villages than in non-target villages
  - > specific immunity increased due to vaccination


|                      | 7        | Target village |     |          | Non-target village |     |  |
|----------------------|----------|----------------|-----|----------|--------------------|-----|--|
|                      | Positive | Total          | %   | Positive | Total              | %   |  |
| FMDV type O/NSP-     | 139      | 203            | 69% | 44       | 235                | 19% |  |
| FMDV type A/NSP-     | 141      | 203            | 70% | 33       | 235                | 14% |  |
| FMDV type Asia1/NSP- | 97       | 203            | 48% | 20       | 235                | 9%  |  |








#### Protective immunity by village



- Increased herd immunity in targeted villages for all 3 serotype
- Non-targeted
  - Serotype O from natural infection
  - Serotype A and Asia-1 from vaccination error



#### NSP prevalence

- Exposure to FMDV was higher in target villages (55%) vs non-target villages (48%)
- Frequent circulation of FMDV in 2019-20 (40-52%; 18mo)

|                   | Target village |       |     | Non-target village |       |     |
|-------------------|----------------|-------|-----|--------------------|-------|-----|
|                   | Positive       | Total | %   | Positive           | Total | %   |
| All animals       | 247            | 450   | 55% | 215                | 450   | 48% |
| Calves <18 mo     | 53             | 101   | 52% | 29                 | 72    | 40% |
| Young >18 – 36 mo | 57             | 119   | 48% | 47                 | 121   | 39% |
| Mature >36 mo     | 137            | 230   | 60% | 139                | 257   | 54% |







### Results (logistic regression model)

- The risk of clinical FMD in 2020
  - Households that never vaccinated (reference)
  - Households that vaccinated within the last 3 months (protective; -75%)

|                 | Coeff     | Relative risk<br>(95% CI) | p value<br>(Wald test) |
|-----------------|-----------|---------------------------|------------------------|
| Days since last |           |                           |                        |
| vaccination     |           |                           |                        |
| Never/unknown   | Reference |                           |                        |
| 0–90 days       | -1.382    | 0.25 (0.07, 0.81)         | <0.05                  |
| 91-180 days     | 0.258     | 1.29 (0.46, 3.70)         | 0.6                    |
| 181-294 days    | 0.062     | 1.06 (0.31, 3.64)         | 0.9                    |







#### Discussion

- FMDV evidently circulated in the study area in 2019-20, suggesting high FMDV circulation and an inadequate herd immunity
- Low vaccine coverage and dropout from booster vaccines may be responsible for the FMDV circulation
  - Need for incentivising farmers for vaccination
- The importance of up-to-date routine vaccination







#### Acknowledgement

NZ Ministry of Foreign Affairs and Trade

NZ Ministry for Primary Industries

Mr Richard Swainsbury

Department of Livestock and Fishery, Lao PDR

Mr Chattouphone Keokhamphet, Ms Khamphok Phithacthep, Ms Vilayvanh Soukvilai

**WOAH-SRR-SEA** 

Epicentre, School of Veterinary Science, Massey University











## Thank you for your attention







