

Newcastle Disease: Global Situation and Effective Control Strategies

Dr. Liu Hualei

China Animal Health and Epidemiology Center
OIE Reference Laboratory for Newcastle Disease

Avian Diseases Surveillance Laboratory

- Newcastle disease
 - OIE/National Reference Laboratory
- Avian influenza
 - National Para-reference Laboratory (Qingdao)
- New emerging avian diseases

National Roles

- Diagnosis
- Surveillance
- Evaluation of Vaccination and Diagnostic
- Technical Training
- Research
 - Diagnostic technologies
 - Molecular Epidemiology
 - Development of New Vaccine
 - Reverse Genetics

—

International Roles

- Virus sharing
- Evaluation of diagnostic kits
- Regional Training
- International cooperation
- Technical support

Outline

- Overview of Newcastle disease
- Global situation of Newcastle disease
- Control strategies and challenges for ND
- Current situation and control experiences in China

Outline

- Overview of Newcastle disease
- Global situation of Newcastle disease
- Control strategies and challenges for ND
- Current situation and control experiences in China

Newcastle Disease

- One of the most important diseases in poultry worldwide
- OIE Notifiable disease (List A)
- More than 200 species of bird can be infected
- High morbidity and mortality in poorly vaccinated chickens
- Drops in egg production in well-vaccinated layers
- Human infection: eye infections

Aetiology

- Family
 - Paramyxoviridae
- Subfamily
 - Avulavirinae
- Genus
 - Orthoavulavirus
- Species
 - Avian orthoavulavirus 1
- Virus
 - Newcastle Disease Virus / APMV-1)

OIE Definition of ND

'Newcastle disease is defined as an infection of birds caused by a virus of APMV-1 that meets **one of** the following criteria for virulence:

- a) The virus has an **ICPI** in day-old chicks of **0.7 or greater**. **OR**
- b) Multiple basic amino acids have been demonstrated at the C-terminus of the F2 protein and **phenylalanine at residue 117**, which is the N-terminus of the F1 protein.

Strain	ICPI	Cleavage site of F protein
La Sota	0.4	112 GRQGR \downarrow L 117
Mukteswar	1.4	112 RRQRR \downarrow F 117

Diversities of NDV

- Virulence diversities (DIVA)
 - Lentogenic: ICPI 0.0-0.7
 - Mesogenic: ICPI 0.7-1.3
 - Velogenic: ICPI 1.3-2.0
- Genetics diversities (Diagnosis)
 - Class I: 1 genotype
 - Class II: 21 genotypes
- Host diversities (Hard to eradicate)
 - Domestic birds
 - Wild birds

Host Range

- At least 241 species from 27 of the 50 Orders of birds, including all the domestic avian species, can be infected
- Probable all bird species are susceptible, but the outcome of infection varies considerably among species

Morbidity and Mortality

Morbidity: up to 100%

Mortality: 90%

- Varies greatly depending on
 - Virulence and strain
 - Avian species and susceptibility of host
 - Environmental conditions
 - Vaccination history
- Some species show few or no signs
 - Carrier state may exist

Laboratory Diagnosis

- Virological Test
 - Virus isolation: BSL-3 facilities
 - RT-PCR and Real-time RT-PCR: Multiple genotypes
- Serological Test
 - HI and ELISA
 - Cannot differentiate infected from vaccinated flocks

Real-time RT-PCR for virulent NDVs

Fig. 1 The specificity of real-time RT-PCR

No cross-reactions were observed with other avian pathogens, like AIV, IBV, EDSV, APMV-4.

Fig. 2 The sensitivity of real-time RT-PCR

The concentration of samples was $10^6 \sim 10^0$ copies/ μ L, and the minimal detection threshold was 10 copies.

Challenges in detection

High genetic diversity of NDV

- Class I: 1 genotypes

- Class II: 21 genotypes

- Difficult to establish a diagnostic method with high specificity and sensitivity.
- Constant evolution of virulent viruses, leading to generation of new genotype or sub-genotype.
- Need to improve the existing tests for detection of variants.

Dimitrov K M, Abolnik C, Afonso C L, et al. Infect Genet Evol, 2019, 74, 103917

Outline

- Overview of Newcastle disease
- Global situation of Newcastle disease
- Control strategies and challenges for ND
- Current situation and control experiences in China

The History of ND

- The first documented outbreaks of ND occurred in Java, Indonesia, and Newcastle-upon-Tyne, England in 1926
- There is evidence that the virulent virus may existed before 1926
- ND has been presented throughout the world
- Five panzootics of ND has been identified since 1926
 - 1st: From Southeast Asia and England since 1926 / II-III-IV
 - 2nd: From Middle East since 1960s / V / captive cage birds
 - 3rd: From Middle East since mid-1970s / VI (racing pigeons)
 - 4th: From Southeast Asia since late 1980s / VII1.1
 - 5th: From Asia since late 2000s / VII.2

Global Situation of ND (2014-2019)

- There are few areas of the world that have not been affected by ND
- 109 OIE members reported the disease in the past 6 years

Data source: OIE (https://www.oie.int)

Global Situation of ND in 2019

46 OIE members reported the disease in 2019

- Asia: 21 *(China)*

Africa: 17

Europe: 2

Bulgaria /Switzerland

North America:3

United States/Haiti/ Mexico

South America: 3

Colombia/Ecuador/Peru

Data source: OIE (https://www.oie.int)

Outline

- Overview of Newcastle disease
- Global situation of Newcastle disease
- Control strategies and challenges for ND
- Current situation and control experiences in China

Strategies for Disease Prevention and Control

Prevention

Measures to avoid disease outbreak

Control

Measures to contain disease outbreak

Eradication

Measures to achieve freedom from the disease

Prevention Strategies

- Quarantine
 - Prevent disease introduction, transmission and spread
- Bio-security practice
 - Humans, Flocks, Facilities, Premises, Environment, Disinfection,
- Vaccination compaign
 - Vaccination can reduce the losses in poultry flocks but can not ensure the prevention of virus circulation (replication and shedding)
- Active surveillance
 - Early detection and rapid response

Control Strategies

- Zoning
- Movement control
- Surveillance and outbreak investigation
- Stamping out with compensation
- Disposal and disinfection
- Vaccination

Bio-security and vaccination alone have not been sufficient to eliminate the circulation of virulent strains!

Biosecurity

Definition

 The combination of all measures taken to reduce the risk of introduction and spread of diseases

Methodology

- External Biosecurity: Reduce introduction
- Internal Biosecurity: Reduce spread

BIOSECURITY is the basis of all disease control program 24

Challenges on Prevention and control

- Global distribution of the disease
 - More than 50% OIE members reported the disease in the past 5 years
 - Underreported outbreak: developing countries / backyard poultry
- Diversity of circulating virulent NDVs
 - New genotypes emerging
 - Recent viruses from Asia, America and Africa are different
- Wide host range
 - Waterfowl / Wild birds

Challenges on Prevention and control (cont.)

- Backyard flocks still have a large proportion
 - Low bio-security, high risk to get infected
- Vaccination does not prevent virus replication
 - Virus shedding: viruses continue to replicate and evolve
 - Virus evolution: challenge on vaccination and virus detection
- There is only one effective strategy to eliminate NDV
 - Eradication through culling is used, but not affordable in developing countries

Outline

- Overview of Newcastle disease
- Global situation of Newcastle disease
- Control strategies and challenges for ND
- Current situation and control experiences in China

ND in China

- The first confirmed outbreak was in 1946
- Since 1980s an intensive vaccination program was implemented
- In recent years the outbreaks of ND gradual declined

Risk-based Surveillance

1.40%

1.20%

1.00%

0.80%

0.60%

0.40%

0.20%

0.00%

1.16%

- Early warning
- Identify prevalent virus
- Evaluation of vaccination and diagnosis

2011 2012 2013 2014 2015 2016 2017 2018 2019

Molecular Epidemiology

1432 NDV obtained from 2014-2019

• Diversity on virulence

Virulent: 59 (4%)

Low virulent: 1373 (96%)

• Diversity on genetic

- Class I: 1097

- Class II: 335

Virulent virus

Genotype VI: 31

Genotype VII: 27

Genotype XII: 1

Control Experiences from China

- Effective surveillance system
 - Response for evaluation on diagnosis and vaccination
- Successful vaccination campaign
 - Genotype-matched vaccine: reduction of virus shedding (A-VII)
 - Quality control
- Reduction of backyard poultry
 - Requirement of environmental protection
- Enhanced bio-security practice
 - Waterfowl
 - Movement control: Quarantine

Acknowledgements

- Dr.Wang Zhiliang (OIE expert)
- Dr. Wang Jingjing
- Dr. Yu Xiaohui
- Dr. Jiang Wenming
- Dr. Wang Kaicheng
- Dr. Liu Shuo
- Dr. Li Yang
- •

Contact Information

Hualei Liu

PhD, Professor
Director of Avian Diseases Surveillance Laboratory
China Animal Health and Epidemiology Center
Ministry of Agriculture and Rural Affairs
P.R. China

Office address: No. 369 Nanjing Road, Qingdao

Email: hualeiliuwy@163.com