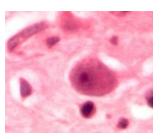
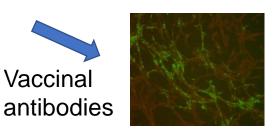


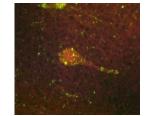
Shrikrishna Isloor, Anthony R. Fooks, R. Sharada and S. Abdul Rahman

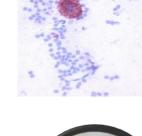

Status of OIE Twinning Programme on – Strengthening diagnosis of rabies in India

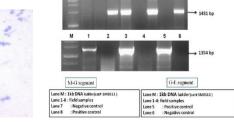
OIE twinned KVAFSU-CVA Rabies Diagnosis Laboratory,
Dept.of Microbiology, Veterinary college, KVAFSU,
Hebbal, Bengaluru

Progress in Diagnostic systems for animal Rabies – Veterinary college, Bangalore, India


1. Prior to 2013: Seller's staining only




2. KVAFSU-CVA Rabies Diagnosis Lab. 2013:



3. OIE Twinning programme - 2016: Strengthening of diagnosis of rabies in India

KVAFSU-CVA-CRUCELL RABIES DIAGNOSTIC LABORATORY

OIE LABORATORY TWINNING PROJECT
2016 - 2019

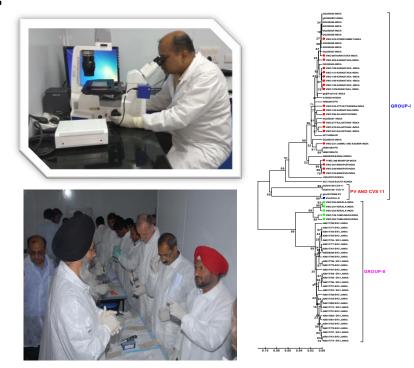
Animal and Plant Health Agency (APHA)
United Kingdom

Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA

The World organization for animal Health (OIE) Laboratory Twinning Programme

- A global programme
- OIE reference centres build expertise for important animal diseases
- Priority regions identified through twinning with national laboratories
- Improve the global capacity for disease detection, prevention and control through better governance of veterinary services.

Specific mandate of OIE twinning:


Training in all Quality assurance systems

Improving surveillance in rabies in animals-

Knowledge transfer and training

- ✓ Antigen detection methods
- ✓ Molecular diagnostic methods

Proficiency testing

Virus characterization and molecular epidemiology

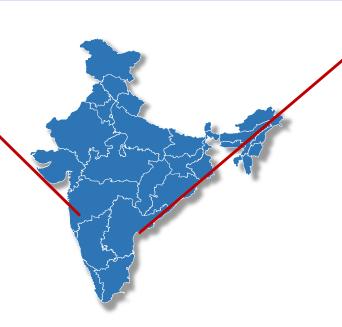
Sample receipt/collection / registration / storage and recording

Fourth workshop

Brain sample collection:
Conventional V/s Occipital
foramen approach

OIE TRAININGS/ WORKSHOPS

Second workshop dRIT-DFA-Nested PCR training



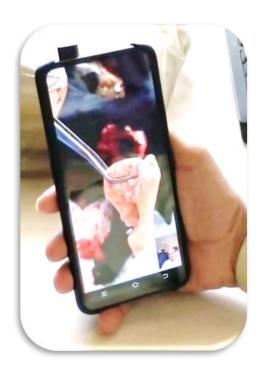
Rabies diagnosis workshops conducted in other states of India

Bidar, Karnataka

Field diagnosis by trainees...

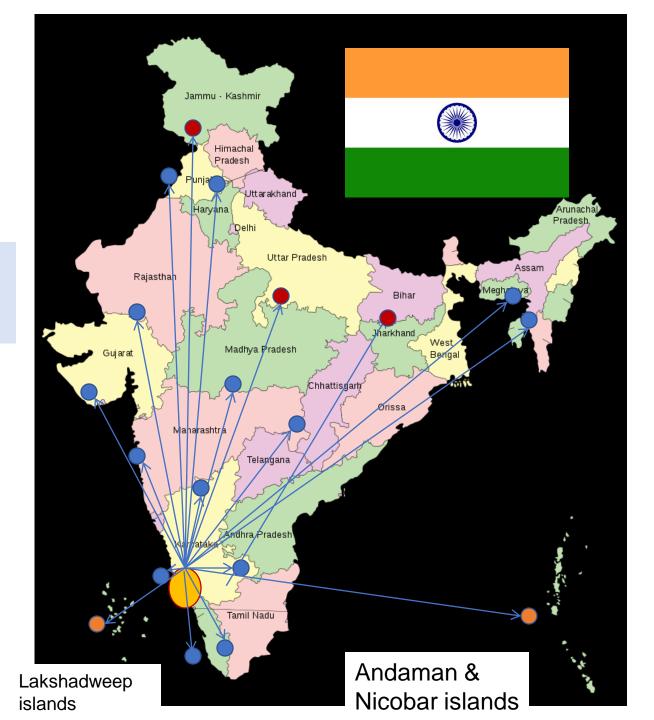
Theerthalli, Shivamogga, Karnataka

Bangalore Rural



Guwahati, Assam

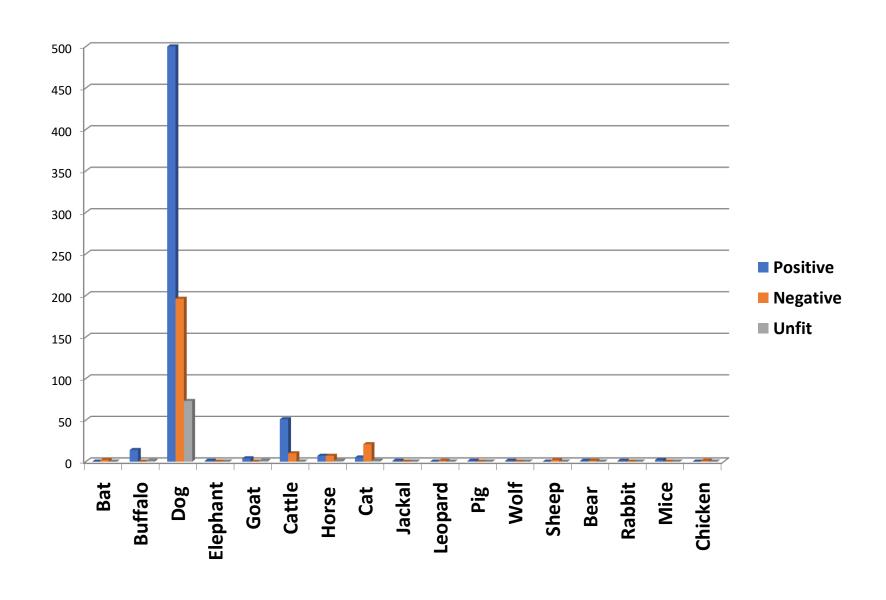
Impact of Social Media – Brain sample collection: 2019



Network (animal rabies diagnosis in India)

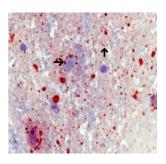
Outcome:

- Training:13 states
- Samples: 15 states &

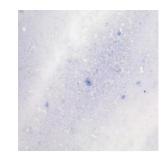

2 UTs.

DFA based detection of rabies viral antigen in animals: Jan 2012 to 31 May 2019

	State	Andhra Pradesh	ASSAM	Bihar	Gujarat	윺	Haryana	J &K	Karnataka	Kerala	Maharashtra	Manipur	Pondicherry	Punjab	Rajasthan	Tamil Nadu	-	Madhya Pradesh	AN	Uttar Pradesh	Total	Positive	Negative	Unfit	
	Species	⋖																2		<u> </u>					
В	at	-	-	-	-		-	-	2	-	-	-	-	-	-	-	-	-	-	-	2	0	2	0	
В	uffalo	-	-	-	3	2	-	11	1	-	_	-		6	-	-			-	2	15	14	0	1	
₫	og	-	3	-	-	2	-	-	618	45	9	35	1	6	16	24	-	-	8	2	769	500	196	73	
E	lephant		-	1		-	-										-	-	-		1	1	0	0	
G	oat	-	-	-	-	-	-	_	3	1				_	_	_		_	-	-	4	4	0	1	
<	attle	1	1	-	4	3	2	-	41	4	-	-	-	4	-	-	-	-	-	1	61	51	10	0	
Н	orse	-	-	-	-	-	-	-	13	-	-	-	-	1	-	1	-	-	-	-	15	7	7	1	
C	at	-	-	-	1	-	-	-	14	1	-	1	-	-	-	-	10	-	-	-	27	5	21	1	
Já	ickal	-	-	-	-	-	-	-	-	-	-	-	-	1	-	-	-	-	-	-	1	1	0	0	
L	eopard	-	-	-	-	-	-	-	1	-	-	-	-	-	-	-	-	-	-	-	1	0	1	0	
Р	ig	-	-	-	-	-	-	-	-	-	-	-	-	1	-	-	-	-	-	-	1	1	0	0	
V	/olf	-	-	-	-	-	-	-	1	-	-	-	-	-	-	-	-	-	-	-	1	1	0	0	
S	heep	-	-	-	-	-	-	-	2	-	-	-	-	-	-	-	-	-	-	-	2	0	2	0	
В	ear	-	-	-	-	-	-	-	2	-	-	-	-	-	-	-	-	-	-	-	2	1	1	0	
R	abbit	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	-	1	1	0	0	
N	1ice	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2	-	-	2	2	0	0	
C	hicken	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	-	1	0	1	0	
T	otal	1	4	1	8	7	2	1	698	51	9	36	1	19	16	25	10	4	8	5	906	589	241	76	
P	ositive	1	3	1	4	7	2	1	482	18	8	20	1	17	0	16	0	3	0	5	589	-	-	-	
N	egative	0	1	0	2	0	0	0	208	0	1	10	0	0	0	0	10	1	8	0	241	-	-	-	
U	nfit	0	0	0	2	0	0	0	8	34	0	6	0	2	16	9	0	0	0	0	76	-	-	-	

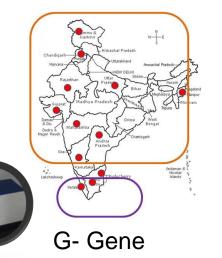

80 % of brain samples tested are from dogs; 66% of dog samples were positives

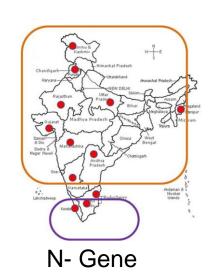
DFA based detection of rabies viral antigen in animals: Jan 2012 to 31 May 2019

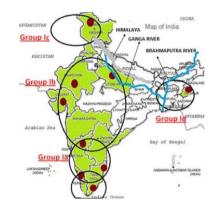


DFA and dRIT correlated well

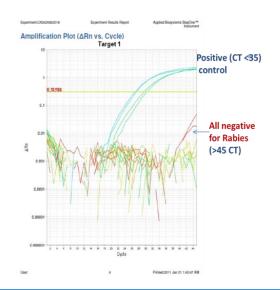
	Total No. of samples collected												
) t	No of	Positive by	Positive by	Positive by	No of samples	No. of negative							
SI. No. Host	samples	DFA	dRIT	RT-PCR	unfit for DFA/dRIT	samples							
	collected												
Dogs	161	101	101	133	32	28							
¹ Cattle	19	14	14	14	1	5							
¹ Buffalo	9	9	9	9	-	-							
1. Horses	4	2	2	2	-	2							
¹ Cats	3	-	-	2	2	1							
¹. Pig	1	1	1	1	-	-							
1 Goat	1	-	-	1	1	-							
Jackal	1	1	1	1	-	-							
1 Wolf	1	1	1	1	-	-							
TOTAL	200	129	129	164	36	36							


Positive




Negative

Molecular characterization:


Conventional PCR: N,G gene PCR didn't reveal genetic diversity

G-L intergenic sequence

Real-Time PCR: LN 34 assay

- A multi-site evaluation of the LN34 assay in 14 laboratories. A total of 2,978 samples (1,049 DFA positive) from the Americas, Europe, Africa and Asia were tested.
- High sensitivity (99.90%), specificity (99.68%) compared to DFA
- Detects viral RNA in fresh, frozen, archived, deteriorated and formalin-fixed brain tissue. (Crystal *et al.*, 2018)

Multi-site evaluation of the LN34 pan-lyssavirus real-time RT-PCR assay for post-mortem rabies diagnostics

Crystal M. Gigante, Lisa Dettinger, James W. Powell, Melanie Seiders, Rene Edgar Condori Condori, Richard Griesser, Kenneth Okogi, Maria Carlos, Kendra Pesko, Mike Breckenridge, Edson Michael M. Simon, Maria Yna Joyce V. Chu, April D. Davis, [...], Yu Li (view all)

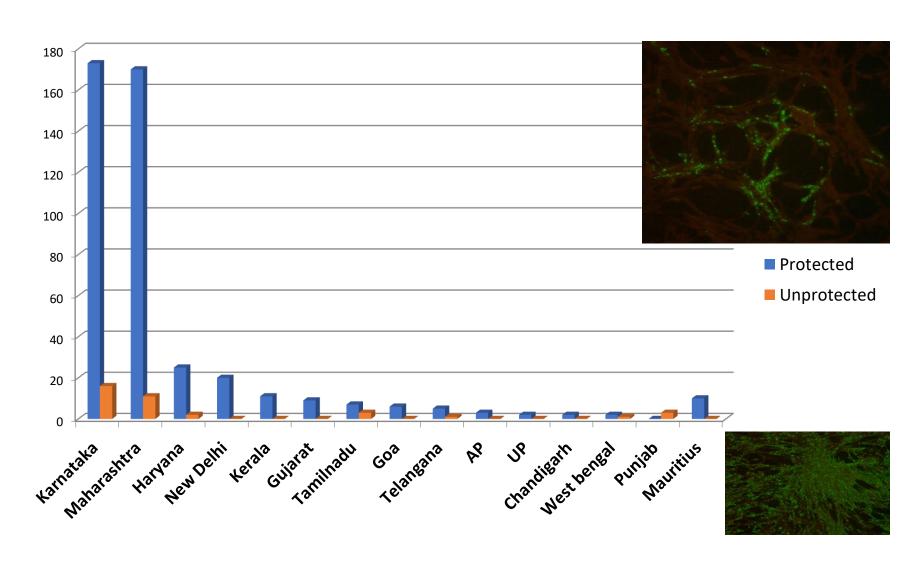
Published: May 16, 2018 • https://doi.org/10.1371/journal.pone.0197074

Review Article

Journal of Veterinary Medicine and Research

First Case Report of Rabies in a Wolf (Canis Lupus Pallipes) from

India


Isloor S₁, Marissen WE₂, Veeresh BH₁, NithinPrabhu K₁, Kuzmin IV₃, Rupprecht CE_{3,4}* Satyanarayana ML₁, Deepti B R₁, Sharada R₁, Neelufer MS₁, Yathiraj S₁ and Abdul Rahman S₁

¹CVA-Crucell-KVAFSU Rabies Diagnostic Laboratory, Animal and Fisheries Sciences University, India

2Departments of Microbiology and Immunology, University of Oklahoma Health Sciences Center, USA

³Global Alliance for Rabies control, Ross University School of Veterinary Madiaina IICA

RFFIT of Dogs for international transportation (Jan. 2012 to May 2019)

WHO-APCRI survey on Rabies in India-Island survey in 2017

For the first time cat brain samples from Lakshadweep and dog brain samples from Andaman tested and found negative so far

POST GRADUATE RESEARCH SUPPORT

2013

Molecular characterization: RT-PCR in animals

2014

- N gene Molecular epidemiology and Development of LAMP
- > Status of antirables vaccinal antibodies in dogs

2015

- Recombinant G protein for seromonitoring of vaccinal antibodies in dogs
- Genetic Variability of G-L Intergenic region sequences of Indian RABV

2016

> Development of RFFIT for assessment of vaccinal efficacy in dogs

2017

> Comparative Evaluation Of LFA, LAMP with DFA and modified DFA

2018


Development of in-house ELISA for vaccinal antibodies

.....with these activities, looking forward to be associated with the SAARC region in "Strengthening diagnosis of rabies in animals, its' prevention and control".

Thanks to CVA - KVAFSU- OIE and WHO