

Patrick Page

Private Capacity

(Former Associate Professor Equine Medicine, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa)

African horse sickness – Protective measures to limit host-vector contact

An overview of *Culicoides* biology, ecology and vector status.

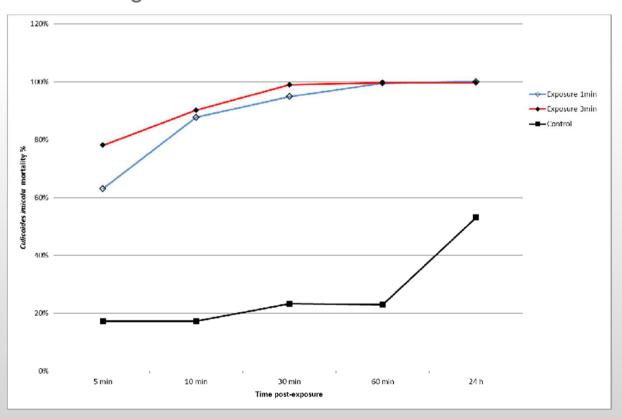
Methods of assessing protective measures

- Protective measures in scope: Barriers, insecticides, repellents
- Method of assessing efficacy
 - Bioassays
 - Light traps
 - Animal-baited tent traps
 - Direct host aspiration
- Assessment endpoints
 - Midge mortality/ blood-feeding
 - Midge numbers/ abundance
 - Attack/ biting rates
- Limitations of variable results

Stabling with untreated mesh

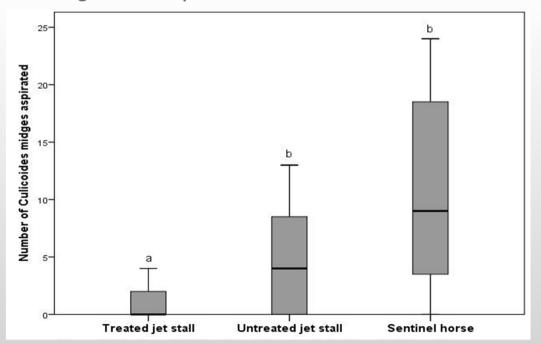
- Stabling alone will not adequately protect horses (e.g. endophilic midge species enter stables)
- Stabling with untreated mesh (1-4 mm) in South Africa
 - 14X reduction in *C. imicola* and *C. bolitinos* entering stables (Meiswinkel et al. 2000)
- Stabling with polypropylene mesh (0.2 mm² aperture) in Switzerland
 - Reduced midges collected in stable/paddock, group and stable housing by 98%, 85% and 67%, respectively (Lincoln et al. 2015)

Stabling with alphacypermethrin-treated HDPE mesh


- High density polyethylene (HDPE)
 - Woven, 0.3 mm mesh, 70% shade
 - Mesh dipped (30 min) in 0.28 mg/ml alphacypermethrin (31.8–33.7 mg/m²)
- Contact bioassay C. imicola exposure to mesh for 1 or 3 minutes
- Mesh applied to jet stall housing horses
 - Direct aspiration of midges at sunset
- Effect of mesh on horse safety
 - Climate, clinical variables (TPR), faecal glucocorticoid stress indicators

Stabling with alphacypermethrin-treated HDPE mesh

 Alphacypermethrin-treated HDPE mesh had a rapid insecticidal effect against field-collected *C. imicola*



Stabling with alphacypermethrin-treated HDPE mesh

- The mesh reduced the Culicoides midge attack rate in the treated stall compared to the untreated stall and a sentinel horse by 6 times and 14 times, respectively
- No negative impact on horse clinical variables or stress indicators

Stabling with cypermethrin/ pyrethrin treated PVC-coated polyester

- PVC-coated polyester mesh (1.6 mm aperture)
- Sprayed with 0.15% cypermethrin, 0.2% pyrethrins in UK (Baker et al. 2015)
- Modified WHO cone bioassay
- Mesh applied to boxes housing light traps
- Mesh applied to stables housing horses
 - Light traps operated inside stable
- Bioassay showed 100% mortality at days 1, 7, and 14 days
- Mesh significantly reduced number of midges entering the stable - mean CPI 96% compared to no mesh control

Insecticides

- Insecticide susceptibility tests on midges from France, Spain, Senegal, South Africa (Venail et al. 2015)
 - Toxicity Deltamethrin > cypermethrin > permethrin
- Deltamethrin
 - Variable results between bioassays and field studies in treated cattle and sheep
 - 1% deltamethrin pour on applied to horses in UK assessment with light trap and poor results (Robin et al. 2015)

Cypermethrin

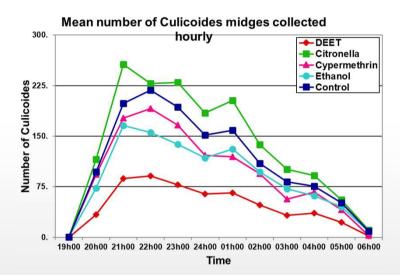
- Overall, good results in field studies on treated cattle and sheep
- High mortality rates in midges exposed to hair from treated cattle, sheep and horses (0.1%) cypermethrin (Papadopoulos et al. 2009, 2010)
- High mortality rate in midges exposed to mesh treated with cypermethrin (Baker et al. 2015; Page et al. 2014)

Permethrin

- Variable results between bioassays and field studies in treated cattle and sheep
- 4% pour on resulted in 86% improvement in 'sweet itch' in horses (Stevens et al. 1988)
- 0.6% pour on applied to horses in tent traps no significant effect (De Raat et al. 2008)
- 0.9% Permethrin and 2% DEET spray applied to horse no significant effect on light trap catches (Lincoln et al. 2015)

Organosphosphates

 Not recommended because of lower efficacy and human/ host/ environment safety concerns



Insect repellents

- N,N-diethyl-3-methylbenzamide (DEET)
 - "Gold standard" repellent in human studies
 - Good results for up to 10 hours with 15% DEET applied to polyester/ HDPE mesh in light trap studies (Braverman et al. 1999, 2000; Page et al. 2009)
 - No significant effect of 2% DEET plus 0.9% permethrin spray applied to horses, assessed with light trap only (Lincoln et al. 2015)
- Avoid high concentrations over 15% DEET
 - Excessive oiliness of hair coat with repeated application; ulceration with 50% and 75% (Palmer, 1969)
 - No adverse effects when 15-17% DEET applied to horses for assessment of tabanid fly control in Switzerland (Herholz et al. 2016)

Insect repellents

- Lemon eucalyptus oil/ p-menthane-3,8-diol (PMD)/ Citriodiol
 - Extracted from Corymbia citriodora (= Eucalyptus citriodora)
 - 50% PMD good repellency on mesh in light trap studies (Braverman et al. 2000)
 - Antifeedant effect (Baker et al. 2015)
- Citronella oil
 - = Lemon grass oil extracted from Cymbopogon
 - Poor repellency on mesh in 2 light trap studies (Page 2009, Venter 2014)
- Combination of 2% lemon grass oil plus 16% PMD
 - Human landing assay repellency >95% to 5 hours (Santamaria 2012)
- Neem oil
 - Anti-landing and antifeedant effect (Blackwell 2004)
 - Limited repellent effect in olfactometer assay (Gonzalez 2014)
 - Poor field efficacy when applied to sheep/ smoke in India light trap study (Keyser et al. 2017)
- Kerosene/ liquid paraffin
 - No scientific evidence for efficacy
 - Negative safety aspects hair loss, fire risk

Horse and environment safety considerations

- Adequate ventilation of mesh-protected stables essential to avoid compromised thermoregulation and respiratory disease
 - Horses thermoregulate through sweating
 - In high-temperature/ humidity climate use of indoor fans recommended
- Beware of insecticide adverse effects on non-target species (Del Rio et al. 2014)
 - Apply targeted use only
 - Avoid indiscriminate insecticide use outside stables

Thank you for your attention

Patrick Page

WORLD ORGANISATION FOR ANIMAL HEALTH
Protecting animals, preserving our future

12, rue de Prony, 75017 Paris, France www.oie.int media@oie.int - oie@oie.int

