

Risk-based Surveillance: approaches to practise

Chris Bartels EuFMD consultant

Objective and expected outcomes

AIM: to <u>discuss approaches to strengthening surveillance</u> in each of the countries and in relation to their current FMD statuses

EXPECTED OUTCOMES:

- To have an analysis of strengths and weaknesses of surveillance approaches currently applied in the participating countries
- For participants to start modifying the surveillance approaches currently included in the National FMD plans, based on the discussions and experiences shared in this workshop

Defined by the FMD TASKFORCE

Question

Emerging Changing disease trend

Understanding a relation

Surveillance starts with

To support decision making on disease control

Key messages

- Surveillance objectives change with progressive FMD control
- Consider difference between Disease versus Infection
- Generic versus risk-based and targeted surveillance
- Strength of Surveillance is the sum of surveillance components

Stu

Networks

eofmd

e-Learning

Dashboard Resources- Networks- Contact-

EuFMD's New Knowledge Bank All about foot and mouth disease! Click here for a searchable database of FMD resources and training tools.

Knowledge Bank

https://eufmdlearning.works/?lang=en

European **Commission for** the control of **FMD**

EuFMD Online Training in support of the Progressive Control Pathway

Ongoing Surveillance is a important principle

1.

2.

3.

4.

5.

eofmd e-Learning

Key issues for surveillance

Heterogeneity in

populations

- Species
- Production systems
- Age-categories
- Location
- Season
- etc

That heterogeneity also applies to **Risk of FMD**

- Probability of infection
- Consequence of infection

These issues often apply more to level of **epi-unit** than to animal level (animals within are kept under same management)

Surveillance

the systematic, ongoing collection, collation and analysis of information related to animal health, and the timely dissemination of information to those who need to know, so that action can be taken (OIE, 2012) → to support informed-decision making

RISK: the probability of the event occurring <u>times</u> the consequence of the event given that it has occurred

Risk-based surveillance

Risk-based

Identifying <u>sub-populations</u> at greater risk of being infected and ensuring these are represented in a proportion greater than in the general population

Surveillance

the systematic, ongoing collection, collation and analysis of information related to animal health, and the timely dissemination of information to those who need to know, so that action can be taken (OIE, 2012) → to support informed-decision making

RISK: the probability of the event occurring <u>times</u> the consequence of the event given that it has occurred

Risk-based surveillance

Risks such as	 Species (susceptibility, infectiousness) Age-categories (susceptibility) Production system (high turnover, density) Markets (contacts) Trading/dealing (contacts) Border areas
	 density) Markets (contacts) Trading/dealing (contacts) Border areas

Risk-based	Identifying sub-populations at risk of being infected and ensu are represented in a proportic than in the general populatior	greater uring these on greater	rveillance	the systematic, ongoing collection, collation and analysis of information related to animal health, and the timely dissemination of information to those who need to know, so that action can be taken (OIE, 2012)
RISK: the probabilit the consequence of th occurred	y of the event occurring <u>times</u> e event given that it has	Risk-base surveilla	ed nce	
Principles of Risk Analysis apply here	Tool to improve efficie surveillance → An important goal is higher benefit-cost rat existing or reduced res	ncy of s to achieve a io with sources	Intentionally introducing bias in sample	
Risks such as	Species (susceptibility, infe Age-categories (susceptibil Production system (high tu Markets (contacts) Trading/dealing (contacts) Border areas	ectiousness) lity) Irnover, density)	-	

Risk-based r a	dentifying sub-populations at isk of being infected and ensu ire represented in a proportion han in the general population	greater uring these on greater 1	Surveillance	the systematic, ongoing collection, collation and analysis of information related to animal health, and the timely dissemination of information to those who need to know, so that action can be taken (OIE, 2012)		
RISK: the probability the consequence of the occurred	of the event occurring <u>times</u> e event given that it has	Risk-based surveillance		 Disease or Infection is present or it is unknown Change of prevalence/incidence over 		
Principles of Risk Analysis apply here	Tool to improve efficient surveillance → An important goal is achieve a higher benefic ratio with existing or re- resources	ncy of to it-cost educed	Intentionally introducing bias in sample	time Detecting cases Proof of absence 2) Disease or Infection is absent Detection of new incursion Demonstrate freedom 		
Risks such as	Species (susceptibility, infe Age-categories (susceptibil Production system (high tu density) Markets (contacts) Trading/dealing (contacts) Border areas	ectiousness) lity) rnover,	-	·		

Risk-based	Identifying sub-populations at risk of being infected and ensu are represented in a proportio than in the general population	greater Iring these n greater	Surveillance	the systematic, ongoing collection, collation and analysis of information related to animal health, and the timely dissemination of information to those who need to know, so that action can be taken (OIE, 2012)
RISK: probability of an contrast to its use in rise combined with conseque the probability of the even consequence of the even	adverse event occurring, in k analysis, where it is likelihood ences rent occurring <u>times</u> the nt given that it has occurred	Risk-ba surveil	ased lance	 Disease or Infection is present Detecting cases Disease or Infection is absent Detection of new incursion
Principles of Risk Analysis apply here	Tool to improve efficiency → An important goal is to a higher benefit-cost ratio w reduced resources	of surveillance achieve a ith existing or	e Intentionally introducing bias in sample	Proof of absence
Risks such as	Species (susceptibility, infectiousness) Age-categories (susceptibility) Production system (high	Passive	Data collection method is passive:	Farmer notification Rumour, media == awareness, willingness to report and level of diagnostics
	turnover, density) Markets (contacts) Trading/dealing (contacts) Border areas		information collection is systematic, regular often for a specific disease	Sero-survey Abattoir-based Risk-based Negative reporting

Country situation

Imagine 3 country situations

Objective or (risk-based) surveillance

Risk-based surveillance endemic situation

Change of prevalence/incidence over time (effect control measures)

Small holding

Initial random NSP-Ab sero-survey (PCP-FMD stage 1): seroprevalence in beef 3 times higher than in small holders

Beef farm

e-Learning

Risk-based surveillance endemic situation

Change of prevalence/incidence over time (effect control measures)

Beef farm

e-Learning

Control measures put in place

- 1. Timely and sufficient vaccination youngstock for markets and fattening
- 2. Improving biosecurity with traders and trucks
- 3. Establishing biosecurity at animal market
- 4. Allowing beef farmers to vaccinate upon arrival

with objective to evaluate effectiveness of the control measures?

Beef farm 2

e-Learning

eofmd

Where to conduct subsequent NSP-Ab survey with objective to evaluate effectiveness of control measures?

If in calves purchased Beef farm 2-3 weeks after introduction, it will evaluate measures including Will only be informative about Small holding traders and markets vaccination of youngstock Sampling older beef cattle may be hazardous Control measures put in place Timely and sufficient vaccination youngstock for markets and fattening 2. Improving biosecurity with traders and trucks 3. Establishing biosecurity at animal market 4 Allowing beef farmers to vaccinate upon arrival Monitoring over time at slaughter **Evaluating vaccination** ABATTOIR at beef farms as well Abattoir

Animal market

Comparison

Representative

- Measure disease/infection in population avoiding bias
- Detect changes over time
- Describe distribution of FMD in population and its subpopulations

Risk-based

- Not a good approach to measure FMD infection in general population
- Needs knowledge on risk-factors to increase probability of finding. This knowledge is based upon prior studies or expert consultation
- More efficient to find Disease or Infection compared with representative
 - Fewer samples needed overall
 - Creating higher sensitivity of surveillance

→ These investments yield higher benefitcost ratios of surveillance

Risk-based surveillance to eliminate FMD virus circulation Very few clinical report, however there maybe unknown virus circulation

Imagine a situation where control measures include intensive vaccination of

cattle but little vaccination of small ruminants (limited resources and epidemiologic argument)

With high vaccine coverage in cattle, virus circulation is limited and clinical expression may be reduced in cattle.

Surveillance of virus circulation may therefore be (best) focused on small ruminants:

- Clinical detection
- Sero-survey

Passive surveillance in small ruminants How to make it a useful surveillance component?

New case definition:

Typical clinical signs of FMD difficult to distinguish. Instead

syndromic surveillance using

- Mortality in lambs/kids
- Limping in adult stock

Requires sensitisation with farmers and SOPs for vets (examination sufficient number of animals, make flock run, history of contacts with other flocks and NSP testing of younger stock if suspected)

- Passive surveillance builds up evidence constantly
- Even with low sensitivity, the use of many observations (farmers) increases the overall surveillance performance

Risk-based surveillance – FAO guidelines 17

Probability of freedom of FMD virus circulation

Making use of:

- 1. Historical evidence
- 2. Probability of introduction
- 3. Multiple surveillance activities

Ad 1. Surveillance sensitivity in multiple time periods. Use of Bayesian approaches to combine data over time, or incorporate historical evidence of freedom:

- **Passive surveillance** (such as discussed for syndromic surveillance in sheep) evidence builds up constantly and even with a low sensitivity of a single sampling unit, many units together increase sensitivity of this surveillance

Probability of freedom of FMD virus circulation

Making use of:

- 1. Historical evidence
- 2. Probability of introduction
- 3. Multiple surveillance activities

Ad 2. Probability of introduction over multiple time periods

- Constant risk that will lower the probability of freedom that was established over time
- Based on historical data or using risk-analysis
- Indicates that surveillance system needs to fed regularly to counterbalance this decrease

Probability of freedom of FMD virus circulation

Making use of:

- 1. Historical evidence
- 2. Probability of introduction
- 3. Multiple surveillance activities

Ad 3. Multiple surveillance activities combined will increase the surveillance sensitivity

- Layers of surveillance, starting with the most widespread and least expensive (passive surveillance), and progressively adding other surveillance components that have higher sensitivity, better degree of targeting at-risk populations and may be more costly (risk-based sero-survey)
- Accumulation of surveillance evidence means that once free status has been achieved, the level of ongoing surveillance to maintain confidence in free status can be much lower than the initial surveillance

What is sensitivity of passive surveillance

Roles and responsibilities of private and public sector

PASSIVE SURVEILLANCE

Passive surveillance

Major advantages of a passive

system are:

- low cost per case detected
- Widespread coverage of population

Major disadvantages are

- poor compliance and
- underreporting of potential cases ...BIAS

Imagine 100 herds in which 25 infected

Imagine 100 herds in which 25 infected

How many will be reported?

Imagine 100 herds in which 25 infected

investigate or sampled``

Samples not tested

Step	infection	Clinical signs	Farmer observes	Consultation private vet	Notification to public vet	Investigation and sampling	Samples tested	Samples testing negative (lack of sensitivity)	Data loss to reporting	No action taken
Probability	100	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9
Cumulative		90	81	73	66	59	53	48	43	39

Mean step probabilities – FMD in Region 9

EuFMD Webinar Tony Martin

Assessing sensitivity of each step in passive surveillance (pink dots) and cumulative sensitivity (blue diamonds)

How does active surveillance complement passive surveillance Examples of active surveillance Roles and responsibilities of private and public sector

ACTIVE SURVEILLANCE

Active surveillance

Major advantages:

- less biased (with careful study design)
- increased certainty of disease freedom if no cases are found;
- lower likelihood of underreporting;
- more credible system for international trade

Major disadvantages:

- high cost per case detected especially if prevalence is low;
- for maximum value must have clear description of purpose.

Active surveillance

Active surveillance: going out to get the information

- 1. Surveys: serological or clinical
- 2. Slaughterhouse, watering points, dip-tanks survey
- 3. Syndrome surveillance
- 4. Sentinel herds (vector-borne)
- 5. Negative or zero reporting
- 6. Participatory disease surveillance (PDS)

Options include:

Population-based without regard to risk grouping (random survey) Risk-based sampling where population is categorized as high-risk or lowrisk

Slaughterhouse surveillance early detection, monitoring progress disease control

Inexpensive

Large number, large coverage, continuous supply

Various specimen available

Non-representative = bias

- Younger, healthy
 Lack of associated data
- Age, origin, vaccination history

Sentinel herds

early detection in area, `proof freedom of disease effectiveness of control programme

Expensive, logistical difficult

- Start with proven sero-negative animals in herds,
- Replacements to be negative
- Individual identification
- Use small herd

Use for infection that spread in wave (vector-borne) Monitoring over time Can also apply to some animals within a farm (unvaccinated) amongst vaccinated animals to monitor virus

circulation

Low sensitivity

Only for disease with clear signs
Vets will become lax
Needs reporting

Needs vet and farmer awareness
Reporting needs fast, solid system
Needs audit in place

Negative or zero reporting proof freedom of disease

Vets visiting farms (for treatment, vaccination, inspections) <u>check and chat</u> Large coverage possible, continuous – brief reports of each visit

Syndromic surveillance early detection

Large coverage, continuous supply Cheap?

Large quantities of data needed Solid data management system Algorithms

- False positives versus false negatives
- Need for follow up

Participatory disease surveillance (searching)

Use of 'participatory approaches' in surveillance

- Places value on local knowledge
- Flexible approach
- Community strongly involved, responds to communities needs

Participatory methods:

- Mapping,
- Proportional piling
- Seasonal calendars

May be combined with traditional approaches Has been used for rinderpest (Africa, Asia), FMD (Turkey) and HPAI (Asia, Egypt)

Villagers mapping an active HPAI outbreak to identify households with infected chickens, document the spread of the disease, and identify risk factors, Indonesia, courtesy J. Mariner

Acknowledgement Angus Cameron - AUSVET

EuFMD consultants

References

Risk-based surveillance - FAO guidelines 17 EpiTools (http://epitools.ausvet.com.au

Workshop on improving FMD monitoring and surveillance

Questions for different stages of FMD control (PCP-FMD 1, PCP-FMD 3, FMD free)

Break out groups by level of FMD control

- 2-3 questions each group
- 1 moderator
- 1 reporteur

Scenario 1 – Active surveillance for detecting circulation of Asia-1 or A/GVII (all countries)

- What <u>active surveillance</u> components will you establish to detect the circulation of Asia-1 or A/GVII?
- When your initial surveillance is demonstrating absence what will your country do to monitor (provide evidence) the absence of these viruses?
 - Use of serology, clinical inspection, syndrome surveillance
 - Where and when to apply?
 - Locations, species, age-categories, production systems
 - > Who to involve, under what mechanism/agreements?

Scenario 2 – Sensitivity of FMD reporting (PCP-1 countries)

- How will you assess/evaluate the steps in the FMD reporting systems to better understand the sensitivity of passive surveillance?
 - Locations, species, production systems
 - > Who to involve, under what mechanism/agreements?
- What are alternatives to your current passive surveillance, or what are actions you will take to improve passive reporting (increase the sensitivity)?

e-Learning

Step	infection	Clinical signs	Farmer observes	Consultation private vet	Notification to public vet	Investigation and sampling	Samples tested	Samples testing negative (lack of sensitivity)	Data loss to reporting	No action taken
Probability	100									
Cumulative										
Action to improve										

Scenario 3 – Post-vaccination monitoring (PCP-3 countries)

- What are <u>the specific objectives</u> for post-vaccination monitoring
 - Population immunity induced by vaccination campaign
 - Performance of your vaccination teams
- What <u>active surveillance activities</u> will you establish to quantify the vaccination effectiveness?
 - > Use of serology, clinical inspection, syndrome surveillance
 - > Where and when to apply?
 - > Locations, species, production systems, age-categories
 - > Who to involve, under what mechanism/agreements

Scenario 4 – Role of small ruminants in FMD virus transmission (all countries)

- To understand the role small ruminants play in maintaining FMD virus circulation, what surveillance your country will establish?
 - > Use of serology, clinical inspection, syndrome surveillance
 - > Where and when to apply?
 - > Locations, species, production systems, age-categories
 - > Who to involve, under what mechanism/agreements

Scenario 5 – Evidence for absence of FMD virus circulation (FMD free and PCP-3 countries)

- What surveillance activities will you establish prove absence of FMD virus circulation in a region, zone or production system?
 - > Use of serology, clinical inspection, syndrome surveillance
 - > Where and when to apply?
 - > Locations, species, production systems, age-categories
 - > Who to involve, under what mechanism/agreements
- Once established, how will you keep monitoring this situation?

Scenario 6 – Progress of your FMD control program

The control of FMD is supposed to result in lower levels of FMD virus circulation

Objective: to measure quantitatively the effectiveness of FMD control measures over time?

- > What approach to surveillance
 - Serology, clinical inspection, syndrome
- > Where and when to apply?
 - > Differences for different species, production systems, regions
 - Locations, time of the year
- > Who to involve, under what mechanism?