COUNTRY REPORT FROM JAPAN

Regional Workshop on Swine Disease Diagnosis Beijing, P. R. China, 30 – 31 Oct 2019

WORLD ORGANISATION FOR ANIMAL HEALTH Protecting animals, preserving our future

- **Production size:** Total no. of pig: 9,189,000 Sows: 823,700 (9.0%)
- No. of pig farm: 4,470 (no backyard farming, no household)
- Domestic consumption of pork per year Total: 1,810,000 tons
 Domestic production: 890,000 tons (49.0%) Import: 925,631 (51.0%)
- Share of GDP ratio: 0.4%

Modified from the data of CAO, Japan

Updates on disease situation Oie

• Current status of major pig diseases of Japan (as of Aug/2019)

(No. of farm)

Year	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
FMD	9	0	0	0	0	0	0	0	0	0
CSF	0	0	0	0	0	0	0	0	10	36
PRRS (LP)	46	74	34	36	19	34	29	25	27	14
PED	NA	NA	15,589	44	836	217	87	66	33	104
AD	5	0	1	0	0	1	0	1	0	0
Erysipelas	878	717	726	750	786	856	588	561	466	214

(No. of animal)

Year	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
FMD	9	0	0	0	0	0	0	0	0	0
CSF	0	0	0	0	0	0	0	0	12	146,302
PRRS (LP)	29	28	87	157	39	131	82	545	153	33
PED	NA	NA	72,950	180	3,885	1,088	420	251	173	601
AD	2	0	3	0	0	5	0	4	0	0
Erysipelas	2,177	2,089	2,775	4,531	3,727	3,380	2,376	1,719	1,672	1,404

Oie

Veterinary System of Japan

Veterinary Officers of Local Government (Animal hygiene station: 166, officer: 2,084)

-Audit, Inspection of farms -Diagnostic tests of animal diseases at pen-side and bench -Preventive actions in case of the outbreak of contagious disease -Consultation, education, exchange of information

• Animal Quarantine Service (Officer: 435)

• Daily Activity of Animal Quarantine Officers at Boarder Control

Interviews and awareness-raisings

Quarantine detector dogs

8

Basic information

- National Institute of Animal Health: National Reference Lab of Animal Diseases Diagnosis (Researcher: 128)
 - *R&D*
 - Diagnostic service as a national reference laboratory

Dairy Sciences

Exotic Disease Research Facility (Tokyo)

Russia

Korea

Tropical Disease Research Facility

- Education & Training
- OIE Reference Laboratories and Collaboration Center
- FAO/OIE accredited Rinderpest Holding facility
- Resource bank
- Outreach activities

NIAH Headquarter/
 Main Bassarah Lah (Tauluuh)

Japan

Swine diseases diagnosis (ASF/CSF/FMD)

- Diagnostic capacity of our lab (Researcher: 10)
 - Cell culture (virus isolation/titration)
 - FAT
 - Immunoblotting
 - ELISA
 - Endpoint PCR/real-time PCR
 - DNA sequencing
 - Whole genome sequencing

Swine diseases diagnosis (ASF/CSF/FMD)

• Diagnostic capacity of our lab (Researcher: 10)

- Cell culture (virus isolation/titration)
- FAT
- Immunoblotting
- ELISA
- Endpoint PCR/real-time PCR
- DNA sequencing
- Whole genome sequencing
- Animal experiments

- Oie
- Successful isolation of multiple ASFV strains in pork meat products smuggled by oversea tourists by using pulmonary alveolar macrophage (PAM) cultures. (76 cases of PCR positive meat/meat products have been detected by AQS as of Oct/2019.)
 - China 62; Vietnam 10; Laos 1; Cambodia 3

例数	アフリカ豚コレラ遺伝子検査陽	性となった豚肉等の情報	写真	
1例目	到 着 日: 2018年10月1日 品 目: ソーセージ (1.5kg) 遺伝子陽性確認日: 2018年10月19日	(北京発、新千歳空港着) (税関検査)		 1st case detected on 01/Oct/2018
2例目	到 着 日: 2018年10月14日 品 目: 豚肉製品(0.4kg) 這伝子陽性確認日: 2018年11月9日	(上海発、羽田空港着) (検疫探知犬)	Ann	
3例目	到 着 日: 2018年11月9日 品 目: ソーセージ (2.5kg) 遺伝子陽性確認日: 2018年11月22日	(大連発、成田空港着)) (検疫探知犬)		
4例目	到着日:2019年1月12日 品目:ソーセージ(0.6 kg) 違伝子陽性確認日:2019年1月25日 (ウイルス分離検査:陽性)	(上海発、中部空港着)) (税関検査))		 virus isolated
5例目	到着日:2019年1月12日 品目:ソーセージ(1.3kg) 違伝子陽性確認日:2019年1月25日 (ウイルス分離検査:陽性)	(青島発、中部空港着)) (口頭質問))	R	 virus isolated
6例目	到 着 日: 2019年1月16日 品 目: ソーセージ (0.5kg) 遺伝子陽性確認日: 2019年1月25日	(瀋陽発、中部空港着)) (検疫探知 犬)		
7例目	到 着 日: 2019年1月12日 品 目: ソーセージ (0.1kg) _{遺伝子陽性確認日:} 2019年1月25日	(上海発、羽田空港着)) (検疫探知 犬)		
8例目	到 着 日: 2019年1月26日 品 目: ソーセージ (0.3kg) _{遺伝子陽性確認日} : 2019年2月5日	(延吉発、関西空港着)) (税関検査))		
9例目	到 着 日: 2019年1月24日 品 目: 豚肉(燻製)(1.5kg) 這伝子陽性確認日: 2019年2月7日	(北京発、成田空港着)) (口頭質問))		

- Successful isolation of multiple ASFV strains in pork meat products smuggled by oversea tourists by using pulmonary alveolar macrophage (PAM) cultures. (So far 76 cases of PCR positive meat/meat products have been detected by AQS.)
- Distribute endpoint PCR systems for ASF/CSF diagnosis to local animal hygiene stations to be used for screening dead/sick pigs and wild boars or confirmation of health status of pigs prior to movement.

1: Extraction negative control
 2&3: ASFV sample
 4: Positive control
 5: PCR negative control

Confirmation by EcoRI digestion

1: Extraction negative control 2&3: ASFV sample 4: Positive control 5: PCR negative control

Current systems for molecular diagnosis at local animal hygiene stations

	ASF	CSF
Method	Endpoint PCR (modified King's)	Endpoint RT-PCR (Vilcek's) * IFA and ELISA combined
Target	Pig, wild boar	Pig, wild boar
Test sample	Whole blood (serum, spleen, tonsil, lymph node)	Serum (tonsil, spleen, kidney)
Extraction	Roche High Pure Viral Nucleic Acid Kit	Roche High Pure Viral RNA Kit
Chemistry	Takara Ex Taq Hot Start version	Invitrogen PrimescriptIII One-step RT-PCR with platinum Taq
Detection	Lonza SeaKem GTG agarose gel EP/ EtBr staining	Lonza SeaKem GTG agarose gel EP/ EtBr staining
Confirmation of test results	EcoRI digestion of positive control	Bgll digestion of positive sample

Oie

Points to be considered

- Choice of kit and chemistry

Points to be considered

- Optimization of procedures

Adjustment annealing temperature in PCR with P72U/D primer set (ASFV detection in tissue homogenate)

-50C/enzyme unknown (Bastos et al., 2003) *-52C/Taq polymerase* (Lubisi et al., 2005)

- Successful isolation of multiple ASFV strains in pork meat products smuggled by oversea tourists by using pulmonary alveolar macrophage (PAM) cultures. (So far 76 cases of PCR positive meat/meat products have been detected by AQS.)
- Distribute endpoint PCR systems for ASF/CSF diagnosis to local animal hygiene stations to be used for screening dead/sick pigs and wild boars or confirmation of health status of pigs prior to movement.
- Established stable procedures to generate various GM ASFVs.

Challenges and possible solution C

• Main limitations encountered in implementation apart from financial

- Limited access to biological resources, especially low/moderate pathological viruses and antisera against different strains
- Shortage of human resources
- Limited space/equipment for animal experiments

... and limitation of finance, of course!

Thank you

WORLD ORGANISATION FOR ANIMAL HEALTH

Protecting animals, preserving our future